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1 Entropy Generation

Consider the scalar conservation law with the diffusion term,

Up + fr = €Ugy (]—)

Define v = OU/Ou where U is a non-increasing entropy function. Then, multi-
plying (1) by v, we obtain the equation for U.

VU + U fp = ULy (2)
— Ut + Fx - E(Umx - Umux) (3)
We integrate this over the interval x = [z, xg] to obtain
TR

Ui + [F) = e[Us] — e/ Vgl dT (4)

L

where U = ["*Udz and [] = ()r — ()1 Observe that as ¢ — 0, ¢[U,] — 0, but
the second term does not vanish if there is a discontinuity inside the interval.
Note in particular that

TR TR 6
—e/ Vyplly AT = —e/ Uw—uvm dx <0 (5)

. . ov

provided g—Z > 0. Hence, this is the term that generates entropy from inside a
discontinuity. For small €, therefore, we may write

TR
Uy + [F] = —e/w vz%% dx (6)

L

This is usually written as an inequality,

U+ [F] <0 (7)
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2 Dissipation

Now consider a numerical flux functin f* defined by

N 1
£ = £~ 5QU] 0
Then, the rate of change of the entropy by this flux is
O = blf ~ lof] )

where U is an integral value of the numerical solution over the cell [y, zg].
Then, inserting f* into this, we obtain

oUu

1
O lfe— [of] — 201D (10
and if we define f. such that [v]f. — [vf] = —[F] (entropy conserving flux),
ou 1
5 = = 35lIQMW (11)

Now, requiring that this matches (6), we obtain

1 T
a[v]Q[v] = e/n Uwa—va dz. (12)
A crude approximation to this would be
1 € Ju
hu = — [v]=— 1
S11Ql] = [t =] (13
so that
2¢ OJu
= —— 14
@ Ax v (14)
The flux function is therefore
€ Ou
= — —— 15
3 Burgers’ Equation
In the case of Burgers’ equation, we have v = 2u and % = % So,
€
f*ZfC—E[u] (16)

To determine ¢, consider the exact solution to the viscous Burgers’ equation,

uzuR—;[u]{l—tanh (—W)} (17)
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where s = %, which describes a viscous shock layer traveling at the speed
s. By using this, we can estimate the width of the shock layer, £. We fit a linear
function through the center of the shock layer, using the exact slope there, and
then compute the distance where the solution becomes ug or uy. The result is
8e
{=—— (18)
[u]
Note that across a shock [u] < 0, so that £ > 0. Now, let £ = kAz where k is a
constant, then solve for € to get

. _[u]/;A:U (19)
So, we have
fr= gkl (20

This dissipation term may be used alone or as an addition to the existing dis-
sipation to provide more dissipation in case of shocks. So it should be switched
off when there is no shock. For example,

pr = o 2O LDy 1)

will do it.

4 Extension to Systems

Everythig is carried over to the system case. For system of equations, we have

. e Ou
" =1 E;a*v["] (22)
which gives the entropy change in the form,
oU € ou
= _[Fl - —T== 2
= —[F] - VT ] (23

So, the entropy is generated correctly if the matrix 2—3 is positive definite. In

the case of the Euler equations, with a proper scaling, we have the indentity,

% = RRT (24)

and therefore it provides a correct entropy generation. Using this identity, we
can rewrite the flux function as

1
f*=f, — 5RART [v] (25)
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where

2¢
— 2
A Az (26)

which is in the form of a one-wave approximation of a more general flux function
* 1 T
f*=f. — 5R\A|R [v] (27)
where |A] is a diagonal matrix. This is a pleasing result. This makes it very sim-
ple to use the dissipation term in (25) as an addition to the existing dissipation
because it can be done in the form of modified wave speeds, i.e.
. 1 * T
f*=f. — §R A" R [v] (28)
where

2€
* — — R
|A] |Al + A= [A] + ﬁxI (29)

€ must be determined in some way. Also, the extra dissipation should be terned
off away from shocks. These are not as simple as in the Burgers case.
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