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1 Entropy Generation

Consider the scalar conservation law with the diffusion term,

ut + fx = ϵuxx (1)

Define v = ∂U/∂u where U is a non-increasing entropy function. Then, multi-
plying (1) by v, we obtain the equation for U .

vut + vfx = ϵvuxx (2)

−→ Ut + Fx = ϵ(Uxx − vxux) (3)

We integrate this over the interval x = [xL, xR] to obtain

Ūt + [F ] = ϵ[Ux]− ϵ

∫ xR

xL

vxux dx (4)

where Ū =
∫ xR

xL
U dx and [ ] = ()R − ()L. Observe that as ϵ → 0, ϵ[Ux] → 0, but

the second term does not vanish if there is a discontinuity inside the interval.
Note in particular that

−ϵ

∫ xR

xL

vxux dx = −ϵ

∫ xR

xL

vx
∂u

∂v
vx dx ≤ 0 (5)

provided ∂u
∂v ≥ 0. Hence, this is the term that generates entropy from inside a

discontinuity. For small ϵ, therefore, we may write

Ūt + [F ] = −ϵ

∫ xR

xL

vx
∂u

∂v
vx dx (6)

This is usually written as an inequality,

Ūt + [F ] ≤ 0 (7)
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2 Dissipation

Now consider a numerical flux functin f∗ defined by

f∗ = fc −
1

2
Q[v] (8)

Then, the rate of change of the entropy by this flux is

∂Û

∂t
= [v]f∗ − [vf ] (9)

where Û is an integral value of the numerical solution over the cell [xL, xR].
Then, inserting f∗ into this, we obtain

∂Û

∂t
= [v]fc − [vf ]− 1

2
[v]Q[v] (10)

and if we define fc such that [v]fc − [vf ] = −[F ] (entropy conserving flux),

∂Û

∂t
= −[F ]− 1

2
[v]Q[v] (11)

Now, requiring that this matches (6), we obtain

1

2
[v]Q[v] = ϵ

∫ xR

xL

vx
∂u

∂v
vx dx. (12)

A crude approximation to this would be

1

2
[v]Q[v] =

ϵ

∆x
[v]

∂u

∂v
[v] (13)

so that

Q =
2ϵ

∆x

∂u

∂v
(14)

The flux function is therefore

f∗ = fc −
ϵ

∆x

∂u

∂v
[v] (15)

3 Burgers’ Equation

In the case of Burgers’ equation, we have v = 2u and ∂u
∂v = 1

2 . So,

f∗ = fc −
ϵ

∆x
[u] (16)

To determine ϵ, consider the exact solution to the viscous Burgers’ equation,

u = uR − 1

2
[u]

{
1− tanh

(
− [u](x− st)

4ϵ

)}
(17)
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where s = uR+uL

2 , which describes a viscous shock layer traveling at the speed
s. By using this, we can estimate the width of the shock layer, ℓ. We fit a linear
function through the center of the shock layer, using the exact slope there, and
then compute the distance where the solution becomes uR or uL. The result is

ℓ = − 8ϵ

[u]
(18)

Note that across a shock [u] < 0, so that ℓ > 0. Now, let ℓ = k∆x where k is a
constant, then solve for ϵ to get

ϵ = − [u]k∆x

8
(19)

So, we have

f∗ = fc + k
[u]2

8
(20)

This dissipation term may be used alone or as an addition to the existing dis-
sipation to provide more dissipation in case of shocks. So it should be switched
off when there is no shock. For example,

f∗ = fc + k
min(0, [u])

8
[u] (21)

will do it.

4 Extension to Systems

Everythig is carried over to the system case. For system of equations, we have

f∗ = fc −
ϵ

∆x

∂u

∂v
[v] (22)

which gives the entropy change in the form,

∂Û

∂t
= −[F ]− ϵ

∆x
[v]T

∂u

∂v
[v] (23)

So, the entropy is generated correctly if the matrix ∂u
∂v is positive definite. In

the case of the Euler equations, with a proper scaling, we have the indentity,

∂u

∂v
= RRT (24)

and therefore it provides a correct entropy generation. Using this identity, we
can rewrite the flux function as

f∗ = fc −
1

2
RλRT [v] (25)
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where

λ =
2ϵ

∆x
(26)

which is in the form of a one-wave approximation of a more general flux function

f∗ = fc −
1

2
R |Λ|RT [v] (27)

where |Λ| is a diagonal matrix. This is a pleasing result. This makes it very sim-
ple to use the dissipation term in (25) as an addition to the existing dissipation
because it can be done in the form of modified wave speeds, i.e.

f∗ = fc −
1

2
R |Λ|∗ RT [v] (28)

where

|Λ|∗ = |Λ|+ λI = |Λ|+ 2ϵ

∆x
I (29)

ϵ must be determined in some way. Also, the extra dissipation should be terned
off away from shocks. These are not as simple as in the Burgers case.
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