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1 Galerkin Discretization on Arbitrary Stencil (Triangles)

The standard Galerkin discretization of the Laplace equation (∇2u = 0) over a triangular mesh
results in the followng equation at node j:

−
∫ ∫

Ω
∇2uh =

∫ ∫
Ω
∇uh · ∇ϕj = 0, (1)

where uh is a linear approximation of the solution u and ϕj is the basis function at the node j.
The gradient of the linear basis funciton ϕj is constant over each triangle:

∇ϕT
j =

nT
j

2ST
, (2)

where ST is the area of the triangle T , and nT
j is the scaled inward normal vector opposite to

the node j (the magnitude is equal to the length of the edge opposite to the node j). The linear
approximation, uh, is given by

uh =
∑

i∈{nodes}

uiϕi. (3)

The gradient of uh is also constant over each triangle:

∇uT =
1

2ST

∑
i∈{jT }

uin
T
i , (4)

where jT is a set of three vertices of the triangle T and ui is the nodal value of u at the node i.

Because all the gradients are constant over each triangle and ϕj is zero outside a set of
triangles, {Tj}, that share the node j (including the boundary), the Galerkin discretization (1)
becomes (simply substitute the constant gradients)∑

T∈{Tj}

1

4ST

∑
i∈{jT }

ui
(
nT
i · nT

j

)
= 0. (5)
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A short version has been published as [ AIAA Journal, 2010 v.48, no.7 ] (See Appendix). 
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Figure 1: Stencil

This can be rearranged into the sum over nodes rather than triangles around j,

1

4

∑
T∈{Tj}

(
nT
j · nT

j

ST

)
uj +

1

4

∑
k∈{kj}

(
nL
k · nL

j

ST
+

nR
k · nR

j

ST

)
uk = 0, (6)

where {kj} is a set of nodes that are directly connected to j. See Figure 1 for the definitions of
the normals. Note that the coefficients for uk can be expressed in terms of edge angles also (the
product of the edge lengths times the cotangent of the angle inbetween).

2 Special Cases

2.1 Regular Uniform Grid

On a regular stencil shown in Figure 2, the Galerkin discretization (6) simplifies to

4uj − u2 − u4 − u6 − u8 = 0, (7)

or

−u4 − 2uj + u8
h2

− u2 − 2uj + u6
h2

= 0, (8)

which corresponds to the standard 5-point finite-difference discretization. Note in particular
that there are no contributions from nodes 1 and 5 because the dot products of the normals in
their coefficients vanish (the normals are perpendicular to each other).
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Figure 2: Regular triangular grid
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Figure 3: Regular non-uniform triangular
grid

2.2 Regular High Aspect Ratio Grid

Next, consider a high aspect ratio grid shown in Figure 3. For this stencil, the Galerkin dis-
cretization (6) simplifies to

2(h2x + h2y)

hxhy
uj −

hx
hy

u2 −
hx
hy

u6 −
hy
hx

u4 −
hy
hx

u8 = 0, (9)

which is

2hx
hy

uj +
2hy
hx

uj −
hx
hy

(u2 + u6)−
hy
hx

(u4 + u8) = 0, (10)

and therefore, we have

−u4 − 2uj + u8
h2x

− u2 − 2uj + u6
h2y

= 0. (11)

This is again nothing but the standard finite-difference discretization. Note that there are no
contributions from nodes 1 and 5 again.

2.3 Regular High Aspect Ratio Grid with Various Diagonal Splittings

It is easy to show that the results in the previous subsections are independent of diagonal
connections. Any diagonal swappings do not change the formulas (8) and (11). To see this,
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consider the coefficient for the solution u2:

1

4

(
nL
2 · nL

j

SL
+

nR
2 · nR

j

SR
.

)
(12)

There are four possible diagonal splittings as shown in Figures 4 to 7. It is obvious that the dot
products in the coefficient, such as nL

2 ·nL
j , are all equal to −h2x for all diagonal splittings. Also

noting that ST = hxhy/2 for all triangles, we find

1

4

(
nL
2 · nL

j

SL
+

nR
2 · nR

j

SR

)
=

1

4

(
−h2x

hxhy/2
+

−h2x
hxhy/2

)
= −hx

hy
, (13)

for all possible diagonal splittings. The same is true for u6. In the same way, we find

1

4

(
nL
4 · nL

j

SL
+

nR
4 · nR

j

SR

)
= −hy

hx
, (14)

1

4

(
nL
8 · nL

j

SL
+

nR
8 · nR

j

SR

)
= −hy

hx
, (15)

for u2 and u8. Also, for uj , we find

1

4

∑
T∈{Tj}

(
nT
j · nT

j

ST

)
=

2(h2x + h2y)

hxhy
, (16)

for all possible diagonal splittings. Therefore, the Galerkin discretization (6) reduces to

2(h2x + h2y)

hxhy
uj −

hx
hy

u2 −
hx
hy

u6 −
hy
hx

u4 −
hy
hx

u8 = 0, (17)

and thus

−u4 − 2uj + u8
h2x

− u2 − 2uj + u6
h2y

= 0, (18)

for all possible diagonal splittings.
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Figure 4: Stencil A for the coefficient of
u2.
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Figure 5: Stencil B for the coefficient of
u2.
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Figure 6: Stencil C for the coefficient of
u2.
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Figure 7: Stencil D for the coefficient of
u2.

2.4 Stretched (Non-Uniform) Grid

Consider the same high aspect ratio grid with non-uniform spacing in y direction (see Figure
8). In this case, the previous results are still valid at nodes 2 and 6. But h′y appears instead of
hy in the coefficient of u2.

1

4

(
nL
2 · nL

j

SL
+

nR
2 · nR

j

SR

)
= −hx

h′y
, (19)

1

4

(
nL
6 · nL

j

SL
+

nR
6 · nR

j

SR

)
= −hx

hy
. (20)

For the node 4, the associated left and right triangles now have different areas. Taking into
account this, we obtain

1

4

(
nL
4 · nL

j

SL
+

nR
4 · nR

j

SR

)
=

1

4

(
−h′y

2

hxh′y/2
+

−hy
2

hxhy/2

)
= −1

2

(
h′y
hx

+
hy
hx

)
. (21)

Similarly, we obtain, for the node 8,

1

4

(
nL
8 · nL

j

SL
+

nR
8 · nR

j

SR

)
= −1

2

(
h′y
hx

+
hy
hx

)
. (22)
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Figure 8: Stencil

For the node j, we obtain

1

4

∑
T∈{Tj}

(
nT
j · nT

j

ST

)
=

h2x + h2y
hxhy

+
h2x + h′y

2

hxh′y
. (23)

We emphasize that these results are independent of diagonal splittings. Finally, the Galerkin
discretization (6) becomes(

h2x + h2y
hxhy

+
h2x + h′y

2

hxh′y

)
uj −

hx
h′y

u2 −
hx
hy

u6 −
1

2

(
h′y
hx

+
hy
hx

)
u4 −

1

2

(
h′y
hx

+
hy
hx

)
u8 = 0. (24)

This can be rearranged into the following,

−u4 − 2uj + u8
h2x

−
u6−uj

hy
− uj−u2

h′
y

hy+h′
y

2

= 0. (25)

The second term approximates ∂2u
∂y2

. It is second-order accurate not at the node j but somewhere
off above it. Therefore, this formula is not precisely second-order accurate. In fact, inserting a
smooth function expanded around j into the formula (25), we find,

∂2u

∂x2
+

∂2u

∂y2
+

1

3

∂3u

∂y3
(hy − h′y) +O(h2) = 0. (26)

This shows that the formula is in general first-order accurate. But the actual solution error
(discretization error) could still be second-order accurate.

We emphasize again that all results above are true for an arbitrary diagonal splitting.
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