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1 Gasdynamic Nozzle Flow

Consider a nozzle with a moderate area variation along its axial direction. Within such a
nozzle, the variation of flow properties is almost confined along the x-axis which is taken
parallel to the centerline (see Figure 1). Quasi-one-dimensional flow is characterized by the
assumption that there are no transverse velocity components and all the remaining variables
are functions of x only,

p= p(J?), P = p(m), Ve = u(x), (1)
but the area is allowed to vary
A= A(z). (2)

We then seek to determine the flow properties (1) for a given nozzle shape A(x). The basic
equations that we need are

puA = const. (3)

2 2
% + Va— 1 = const. (4)
p/p? = const. (5)

where a = /vp/p. Relating an arbitrary state with the sonic point (u = a) via (3), we
obtain

pul = p*u* A* (6)

where the sonic condition is indicated by asterisk, which, by introducing the stagnation
condition ()g, is written in the form
T 0w mpu @)
pu pop u

Once we obtain the three ratios on the right hand side in terms of Mach number only,
we have a desired result as it then can be solved (numerically perhaps) for Mach number
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Figure 1: A Nozzle and the coordinate axes.

for a given A. These quantities can be found from the energy equation (4). The energy
conservation between an arbitrary state and the stagnation point is

+ = : (8)

Division by a? gives

2 +7—1_7—1¥’
which by the isentropic relation
ag/a® = (po/p)"™" (10)

yields
(11 )T (11)
p 2 '

This is one of the desired ratio. Another is derived from taking this to the sonic point,

W<V+UJ1. (12)

p* 2
Now, consider the energy conservation between an arbitrary state and the sonic point,

u? a? v+1 2
—_ = *=, 13
2 5-1 -1 (13)

Division by u? and some algebraic maniputlation yields (note that u* = a*)

* y=1pr2
w_ H;#%%Q (14)
U =M
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which is the final piece we needed. Now, substituting (11), (12), and (14) into (7), we finally

obtain
2 . (v+1)/(v-1)
AV L2 (it (15)
A* M2 |[y+1 2

which is the desired result. For a given nozzle shape A(z), this can be solved numerically
for Mach number M (z). Once the Mach number is computed, other flow properties follow
as they are functions of Mach number only.

Obviously there are two Mach numbers associated with a particular area ratio ,f* : one
for subsonic and the other for supersonic flow. A solution in which the flow accelerates
from subsonic to supersonic with M = 1 precisely at the throat A = A* can be uniquely
determined for a given nozzle. Another solution would be a subsonic flow over the entire
nozzle. Yet, another solution is a flow with a normal shock somewhere in the supersonic
region. The latter two depend on the exit pressure. See [1] for further details.

2 Aligned MHD Nozzle Flow

Aligned MHD flow is the one for which B || V. In this case, we have [2], with a being an
arbitrary constant

B = apV (16)
which under the quasi-one-dimensional assumption becomes
B, (z) = apu(x). (17)

Hence there exists only a streamwise component in the magnetic field. It can be shown
that in such a case the streamwise magnetic field component disappears completely in the
governing equations for the quasi-one-dimensional flow and therefore the basic equations
become identical to those in gasdynamics. Consequently, the solution for such a MHD flow
can be obtained simply by computing B, (z) using (17) after other variables are determined
as in the gasdynamics case.

3 Transverse MHD Nozzle Flow

We now consider the case in which B L 'V, or B = (0,0, B) . Here, the z—direction is taken
normal to the plane in which the velocity vector resides. In this case, the basic equations
are given by [3]

puA = const. (18)
2 2 B2
% a t— = const. (19)
Y- p
p/pY = const. (20)
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with
B
— = const. (21)
p

where B has been scaled by /1. The difficulty in obtaining area-Mach number relation
comes from the extra term in the energy conservation, B?/p. However it can be made look
identical to the gasdynamic case when v = 2. Suppose v = 2, and then write

u?
?—I—c2 = const. (22)
where

A =a*+d; (23)

and ay = B/,/p is the Alfven speed. Using the stagnation state, we obtain
M2 Co 2
S+t = (2. 24
2 + c (24)

Note that the Mach number, M, is here defined by M = u/y/a? + a% ' In order to get the

density ratio 22 in terms of Mach number, we must convert the ratio < to the density ratio.

By definition, we have

(@)2 _ 2po/po + B/ po (25)
c 2p/p+B?/p ’

which can be arranged into the form

c0\2 _ 2(po/p3) + (Bo/po)* ( p.
(0) = 2(p/p?) + (B/p)? ( > (26)

Po
Owing to (5) with v = 2 and (21), this becomes

2
(%)= (%) (27)
¢ P
The speed ¢ therefore behaves just like the speed of sound in the gasdynamic case, at least

for the relationship with the density ratio (comapre this with (10) for v = 2). We then
obtain from (22)

2
By =, (28)

and also

o 3
po_ 2, (29)
pr 2

IThis is the Mach number that characterizes the nozzle flow as it appears in the equation,

2 1d 1dA
(a?ij—iai - 1) - 9w = 252 (for any value of v).
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Compare these with (11) and (12). The ratio "7 can also be obtained easily from the energy

conservation.
* M2
wo_ 1+ (30)
u %MQ

in the same way in Section 1. Finally, substituting these results into the continuity, we

obtain
AN®  ptpour 1 ]2 M2\’
S B N =N R | (31)
A* pop u M?|3 2

This is identical to (15) with v = 2 except for the definition of the Mach number. This

suggests that the flow properties can be determined as in the gasdynamic case with v = 2
and then the magnetic field component B can be obtained a posteriori by (21), i.e.

B(z) = (Bo/po) p(x). (32)

4 Parallel-Transverse MHD Nozzle Flow

The results from Section 2 and 3 may be combined to produce a flow with B = (B,, 0, B,).

References

[1] Anderson, J. D., Modern Compressible Flow, McGraw-Hills, 1990.

[2] Grad, H., Reducible Problems in Magneto-Fluid Dynamic Steady Flows, Review of Mod-
ern Physics, 32, No. 4, pp. 830-847, 1960.

[3] Liffman, K. and Siora A., Magnetosonic Jet Flow, Mon. Not. R. Astron. Soc., 290, pp.
629-635, 1997.

(©2003 by Hiroaki Nishikawa 5



