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1 Gasdynamic Nozzle Flow

Consider a nozzle with a moderate area variation along its axial direction. Within such a
nozzle, the variation of flow properties is almost confined along the x-axis which is taken
parallel to the centerline (see Figure 1). Quasi-one-dimensional flow is characterized by the
assumption that there are no transverse velocity components and all the remaining variables
are functions of x only,

p = p(x), ρ = ρ(x), Vx = u(x), (1)

but the area is allowed to vary

A = A(x). (2)

We then seek to determine the flow properties (1) for a given nozzle shape A(x). The basic
equations that we need are

ρuA = const. (3)

u2

2
+

a2

γ − 1
= const. (4)

p/ργ = const. (5)

where a =
√
γp/ρ. Relating an arbitrary state with the sonic point (u = a) via (3), we

obtain

ρuA = ρ∗u∗A∗ (6)

where the sonic condition is indicated by asterisk, which, by introducing the stagnation
condition ()0, is written in the form

A

A∗ =
ρ∗

ρ

u∗

u
=

ρ∗

ρ0

ρ0
ρ

u∗

u
. (7)

Once we obtain the three ratios on the right hand side in terms of Mach number only,
we have a desired result as it then can be solved (numerically perhaps) for Mach number
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Figure 1: A Nozzle and the coordinate axes.

for a given A. These quantities can be found from the energy equation (4). The energy
conservation between an arbitrary state and the stagnation point is

u2

2
+

a2

γ − 1
=

a20
γ − 1

. (8)

Division by a2 gives

M2

2
+

1

γ − 1
=

1

γ − 1

a20
a2

, (9)

which by the isentropic relation

a20/a
2 = (ρ0/ρ)

γ−1 (10)

yields

ρ0
ρ

=

(
1 +

γ − 1

2
M2

) 1
γ−1

. (11)

This is one of the desired ratio. Another is derived from taking this to the sonic point,

ρ0
ρ∗

=

(
γ + 1

2

) 1
γ−1

. (12)

Now, consider the energy conservation between an arbitrary state and the sonic point,

u2

2
+

a2

γ − 1
=

γ + 1

2(γ − 1)
a∗2. (13)

Division by u2 and some algebraic maniputlation yields (note that u∗ = a∗)

u∗

u
=

√
1 + γ−1

2 M2

γ+1
2 M2

(14)
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which is the final piece we needed. Now, substituting (11), (12), and (14) into (7), we finally
obtain (

A

A∗

)2

=
1

M2

[
2

γ + 1

(
1 +

γ − 1

2
M2

)](γ+1)/(γ−1)

(15)

which is the desired result. For a given nozzle shape A(x), this can be solved numerically
for Mach number M(x). Once the Mach number is computed, other flow properties follow
as they are functions of Mach number only.

Obviously there are two Mach numbers associated with a particular area ratio A
A∗ : one

for subsonic and the other for supersonic flow. A solution in which the flow accelerates
from subsonic to supersonic with M = 1 precisely at the throat A = A∗ can be uniquely
determined for a given nozzle. Another solution would be a subsonic flow over the entire
nozzle. Yet, another solution is a flow with a normal shock somewhere in the supersonic
region. The latter two depend on the exit pressure. See [1] for further details.

2 Aligned MHD Nozzle Flow

Aligned MHD flow is the one for which B ∥ V. In this case, we have [2], with α being an
arbitrary constant

B = αρV (16)

which under the quasi-one-dimensional assumption becomes

Bx(x) = αρu(x). (17)

Hence there exists only a streamwise component in the magnetic field. It can be shown
that in such a case the streamwise magnetic field component disappears completely in the
governing equations for the quasi-one-dimensional flow and therefore the basic equations
become identical to those in gasdynamics. Consequently, the solution for such a MHD flow
can be obtained simply by computing Bx(x) using (17) after other variables are determined
as in the gasdynamics case.

3 Transverse MHD Nozzle Flow

We now consider the case in which B ⊥ V, or B = (0, 0, B) . Here, the z−direction is taken
normal to the plane in which the velocity vector resides. In this case, the basic equations
are given by [3]

ρuA = const. (18)

u2

2
+

a2

γ − 1
+

B2

ρ
= const. (19)

p/ργ = const. (20)

c⃝2003 by Hiroaki Nishikawa 3



CFD Notes by Hiroaki Nishikawa www.cfdnotes.com

with

B

ρ
= const. (21)

where B has been scaled by
√
µ0. The difficulty in obtaining area-Mach number relation

comes from the extra term in the energy conservation, B2/ρ. However it can be made look
identical to the gasdynamic case when γ = 2. Suppose γ = 2, and then write

u2

2
+ c2 = const. (22)

where

c2 = a2 + a2A (23)

and aA = B/
√
ρ is the Alfven speed. Using the stagnation state, we obtain

M2

2
+ 1 =

(c0
c

)2

. (24)

Note that the Mach number, M , is here defined by M = u/
√

a2 + a2A
1 In order to get the

density ratio ρ0

ρ in terms of Mach number, we must convert the ratio c0
c to the density ratio.

By definition, we have (c0
c

)2

=
2p0/ρ0 +B2

0/ρ0
2p/ρ+B2/ρ

, (25)

which can be arranged into the form(c0
c

)2

=
2(p0/ρ

2
0) + (B0/ρ0)

2

2(p/ρ2) + (B/ρ)2

(
ρ

ρ0

)
. (26)

Owing to (5) with γ = 2 and (21), this becomes(c0
c

)2

=

(
ρ0
ρ

)
. (27)

The speed c therefore behaves just like the speed of sound in the gasdynamic case, at least
for the relationship with the density ratio (comapre this with (10) for γ = 2). We then
obtain from (22)

ρ0
ρ

= 1 +
M2

2
, (28)

and also

ρ0
ρ∗

=
3

2
. (29)

1This is the Mach number that characterizes the nozzle flow as it appears in the equation,(
u2

a2+a2
A

− 1

)
1
u

du
dx

= 1
A

dA
dx

(for any value of γ).
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Compare these with (11) and (12). The ratio u∗

u can also be obtained easily from the energy
conservation.

u∗

u
=

√
1 + M2

2
3
2M

2
(30)

in the same way in Section 1. Finally, substituting these results into the continuity, we
obtain (

A

A∗

)2

=
ρ∗

ρ0

ρ0
ρ

u∗

u
=

1

M2

[
2

3

(
1 +

M2

2

)]3
. (31)

This is identical to (15) with γ = 2 except for the definition of the Mach number. This
suggests that the flow properties can be determined as in the gasdynamic case with γ = 2
and then the magnetic field component B can be obtained a posteriori by (21), i.e.

B(x) = (B0/ρ0) ρ(x). (32)

4 Parallel-Transverse MHD Nozzle Flow

The results from Section 2 and 3 may be combined to produce a flow with B = (Bx, 0, Bz).
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