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1 General Form

Consider a 2D linearized symmetrizable conservation law in the conservative form,

Ut +AUx +BUy = 0. (1)

This is transformed into a symmetric form for which a symmetric preconditioning matrix
can be constructed, by a matrix T,

T(Ut + A Ux + B Uy) = 0 (2)

−→ Us
t + AsUs

x +BsUs
y = 0 (3)

where the matrix T = QM is the product of a rotation and a variable transformation
matrices, and

As = TAT−1 Bs = TBT−1. (4)

The symmetric form may be written in the streamline coordinates (s, n),

Us
t +As

∥U
s
s +As

⊥U
s
n = 0 (5)

where
As

∥ = As cos θ +Bs sin θ As
⊥ = Bs cos θ −As sin θ (6)

and θ is the flow angle.
Note that if P denotes a symmetric preconditioner to be applied in the form

Us
t +P(AsUs

x +BsUs
y) = 0, (7)

then the corresponding preconditioner for the conservative form to be used in the form

Ut +Pc(AUx +BUy) = 0 (8)

is given by
Pc = T−1PT. (9)
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In finite-volume methods, the Roe scheme is formulated using the Jacobian normal to a
cell face, n⃗ = (nx, ny) = (cosϕ, sinϕ),

An = A cosϕ+B sinϕ, (10)

and defines the numerical flux

Fn =
1

2
(FR + FL)−

1

2
|An|∆U. (11)

The dissipation term must be formulated based on the preconditioned system, and the flux
is modified as follows.

Fn =
1

2
(FR + FL)−

1

2
P−1

c |PcAn|∆U (12)

where Pc is a preconditioning matrix in the conservative variable. It is convenient to write
the modified version using the matrices associated with the symmetric form. For this pur-
pose, we manipulate the matrix |PcAn| as follows.

|PcAn| = |T−1PTAn| (13)

= |T−1PTAn(T)−1T| (14)

= |T−1PT(A cosϕ+B sinϕ)T−1T| (15)

= |T−1P(As cosϕ+Bs sinϕ)T| (16)

= T−1|P(As cosϕ+Bs sinϕ)|T (17)

= T−1|P(As
∥ cos(ϕ− θ) +As

⊥ sin(ϕ− θ))|T. (18)

In the case of 2D ideal MHD, this matrix is extremely complicated to write down analyt-
ically. We may therefore compute this, using some software that returns eigenvalues and
eigenvectors numerically. However, we can avoid calling such a routine. Still numerically,
but we can evaluate this in a simple way. This is possible if the preconditioner is exact:
as it is derived from the theory based on the steady decomposition (no approximation is
allowed).

2 Simplification

2.1 Hyperbolic Case

If the subproblem of the steady system is all hyperbolic, the preconditioner is given by

P =
∑

akrkr
T
k , ak =

C

|rTkArk|
√
1 + λ2

k

(19)

Therefore, we have, from equation (18),

|PcAn| = T−1
∣∣∣∑ akrkr

T
k (A

s
∥ cos(ϕ− θ) +As

⊥ sin(ϕ− θ))
∣∣∣T. (20)
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By definition,

|PcAn| = T−1
∣∣∣∑ akrkr

T
kA∥ {cos(ϕ− θ) + λk sin(ϕ− θ)}

∣∣∣T. (21)

We write this as

|PcAn| = T−1

∣∣∣∣∣∑λ⋆
k

rkr
T
kA∥

|rTkArk|

∣∣∣∣∣T (22)

where

λ⋆
k =

C {cos(ϕ− θ) + λk sin(ϕ− θ)}√
1 + λ2

k

(23)

which is exactly the wave speed normal to the cell face of the k-th component of the pre-
conditioned system. Finally, because the matrix

rkr
T
kA∥

|rTkArk|
(24)

is the k-th orthonormal projection matrix, it has only one nonzero eigenvalue that is unity,
and moreover it shares eigenvectors with A−1B. Therefore, we finally obtain

|PcAn|∆U =
∑

|λ⋆
k|α⋆ r⋆k (25)

where

α⋆ = ℓ⋆k ∆U =
rTkA∥

|rTkArk|
T∆U (26)

r⋆k = T−1rk. (27)

This is an obvious result. The expression above is just straightforward wave decomposition
of the preconditioned system we designed. The flux function can now be written as

Fn =
1

2
(FR + FL)−

1

2
P−1

c

∑
|λ⋆

k|α⋆ r⋆k (28)

which does not require any numerical routines to compute eigenvalues and eigenvectors
(although it may still be complicated to write down).

2.2 Elliptic Case

If there is an elliptic component, the preconditioner is given by

P = aeSS
T = ae(rRr

T
R + rIr

T
I ) (29)

where S = [rR, rI ] and

ae =
keC

√
1
2 (1 + λ2

R + λ2
I −R)

|λI |
(30)

R =
√

(1− λ2
R − λ2

I)
2 + 4λ2

R (31)
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ke =
1√

(rTRArR)2 + (rTRArI)2
. (32)

Therefore, we have, from equation (18),

|PcAn| = T−1
∣∣∣aeSST (As

∥ cos(ϕ− θ) +As
⊥ sin(ϕ− θ))

∣∣∣T. (33)

By definition (real and imaginary parts of rT (As
⊥ − λAs

∥) = 0), we have

STAs
⊥ =

[
λR −λI

λI λR

]
STAs

∥, (34)

and so we may write

|PcAn| = T−1

∣∣∣∣aeS{
cos(ϕ− θ) +

[
λR −λI

λI λR

]
sin(ϕ− θ)

}
STAs

∥

∣∣∣∣T (35)

which can be written also as

|PcAn| = T−1

∣∣∣∣aeS(STAs
∥S)

−1(STAs
∥S)

{
cos(ϕ− θ) +

[
λR −λI

λI λR

]
sin(ϕ− θ)

}
(STAs

∥)

∣∣∣∣T
= T−1

∣∣∣∣aeS(STAs
∥S)

−1

[
rTRArR rTRArI
rTI ArR rTI ArI

]{
cos(ϕ− θ) +

[
λR −λI

λI λR

]
sin(ϕ− θ)

}
(STAs

∥)

∣∣∣∣T
= T−1

∣∣∣∣aeS(STAs
∥S)

−1

[
k1 k2
k2 −k1

]{
cos(ϕ− θ) +

[
λR −λI

λI λR

]
sin(ϕ− θ)

}
(STAs

∥)

∣∣∣∣T
= T−1

∣∣∣aeS(STAs
∥S)

−1Aen(S
TAs

∥)
∣∣∣T (36)

= T−1S(STAs
∥S)

−1 |aeAen|STAs
∥T (37)

where Aen is a 2x2 matrix whose eigenvalues are

λ±
en = ±ae

√
(k21 + k22)

[
{cos(ϕ− θ) + λRsin(ϕ− θ)}2 + λ2

Isin
2(ϕ− θ)

]
(38)

(See equation (29) in the draft of the AIAA 2003 paper) and the associated eigenvector is
given by

r±en =

[
sin(ϕ− θ)k1λI − {cos(ϕ− θ) + λR sin(ϕ− θ)} k2

sin(ϕ− θ)k2λI + {cos(ϕ− θ) + λR sin(ϕ− θ)} k1 − λen

]
. (39)

Finally, we obtain
|PcAn|∆U = |λ+

en|α+
e r+e + |λ−

en|α−
e r−e (40)

where

α±
e = ℓ± ∆U = (r±en)

TSTAs
∥T∆U (41)

r±e = T−1S(STAs
∥S)

−1 r±en. (42)
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Hence, if there are hyperbolic and elliptic components, the flux is given by

Fn =
1

2
(FR + FL)−

1

2
P−1

c

 ∑
hyperbolic

|λ⋆
k|α⋆ r⋆k +

∑
elliptic

(
|λ+

en|α+
e r+e + |λ−

en|α−
e r−e

) .

(43)
Note that by orthogonality of the subspaces, we have been able to consider elliptic parts
independently.

3 Euler Equations

3.1 Supersonic Case

In the supersonic case, we obtain

Fn =
1

2
(FR + FL)−

1

2
P−1

c

4∑
k=1

|λ⋆
k|α⋆ r⋆k (44)

where

λ⋆
1 = cos(ϕ− θ)M (45)

λ⋆
2 = cos(ϕ− θ)M (46)

λ⋆
3 = cos(ϕ− θ)

√
M2 − 1 + sin(ϕ− θ) (47)

λ⋆
4 = cos(ϕ− θ)

√
M2 − 1− sin(ϕ− θ) (48)

α⋆
1 = ∆ρ− ∆p

c2
(49)

α⋆
2 =

ρq∆q +∆p

q
(50)

α⋆
3 =

1

2
[ρq2∆θ +

√
M2 − 1∆p] (51)

α⋆
4 =

1

2
[ρq2∆θ −

√
M2 − 1∆p] (52)

r⋆1 =
[
1, u, v, q2/2

]T
(53)

r⋆2 = [0, cos θ, sin θ, q]
T

(54)

r⋆3 =

[
1

c2
√
M2 − 1

,
sin θ +

√
M2 − 1 cos θ

q
,
cos θ +

√
M2 − 1 sin θ

q
,

−1√
M2 − 1

(
M2

2
+

γ − 2

γ − 1

)]T

(55)

r⋆4 =

[
−1

c2
√
M2 − 1

,
sin θ −

√
M2 − 1 cos θ

q
,
cos θ −

√
M2 − 1 sin θ

q
,

1√
M2 − 1

(
M2

2
+

γ − 2

γ − 1

)]T

(56)

Note that not to mention the case M = 1 some expressions are singular at q = 0.
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3.2 Subsonic Case

Fn =
1

2
(FR + FL)−

1

2
P−1

c

{
2∑

k=1

|λ⋆
k|α⋆ r⋆k +

(
|λ+

en|α+
e r+e + |λ−

en|α−
e r−e

)}
(57)

where the hyperbolic part is the same as in the supersonic case, and

z =

√
(1−M2) cos2(ϕ− θ) + sin2(ϕ− θ) (58)

λ+
en = Mz (59)

λ−
en = −Mz (60)

α+
e =

M
√
1−M2

ρ

[
sin(ϕ− θ)(1−M2)∆p−

{
z + (1−M2) cos(ϕ− θ)

}
ρq2∆θ

]
(61)

α−
e =

M
√
1−M2

ρ

[
sin(ϕ− θ)(1−M2)∆p+

{
z − (1−M2) cos(ϕ− θ)

}
ρq2∆θ

]
(62)

r+en =


ρM sin(ϕ−θ)√

1−M2

ρ

M
√
1−M2

{
(1−M2)(v cos(ϕ− θ)− u sin(ϕ− θ)) + vz

}
−ρ

M
√
1−M2

{
(1−M2)(u cos(ϕ− θ) + v sin(ϕ− θ)) + uz

}
ρc2M sin(ϕ−θ)√

1−M2

(
M2

2 − γ−2
γ−1

)
 (63)

r−en =


ρM sin(ϕ−θ)√

1−M2

ρ

M
√
1−M2

{
(1−M2)(v cos(ϕ− θ)− u sin(ϕ− θ))− vz

}
−ρ

M
√
1−M2

{
(1−M2)(u cos(ϕ− θ) + v sin(ϕ− θ))− uz

}
ρc2M sin(ϕ−θ)√

1−M2

(
M2

2 − γ−2
γ−1

)
 (64)

Again the eigenvectors are singular at M = 0.

4 Remarks

For the Euler equations, the modified Roe scheme is relatively simple. It is desired that the
singularity at M = 0 be removed. Although the step from (36) to (37) has not been proved
mathematically, it is found to be true for the Euler equations.

As mentioned before, this modification is valid only for exact preconditoners which may
be constructed numerically. For approximate preconditioners, we need to compute eigenval-
ues and eigenvectors numerically at every face which is very expensive. For this reason, it
may turn out that numerically constructed exact preconditioners are more economical than
approximate ones.
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