

Numerical Simulations of General Conservation Laws Using the Space-Time Conservative CESE Method

Chau-Lyan Chang
Computational AeroSciences Branch
NASA Langley Research Center

National Institute of Aerospace CFD Seminar Hampton, VA, September 9th, 2014

To Dr. I-Shih Chang of Aerospace Corporation (1945-2014)

 For his passion, love and contribution to his motherland, in rocket propulsion and to the CESE method

Outline

- Background
- The space-time CESE method
- Current applications in fluid dynamics
- Applications to other disciplines
- Concluding remarks

Examples of critical complex flow physics

Bisek, N and Poggie J., "Large Eddy Simulations of Separated Supersonic Flow with Plasma Control," AFRL presentation, April 23, 2013.

pressure
1.806e+04
1.673e+04
1.540e+04
1.408e+04
1.275e+04

http://www.fzt.haw-hamburg.de/pers/Scholz/dglr/hh/text_2012_01_26_CFD.pdf

Supersonic (Mach 6) transition induced by roughness

Future CFD Software

- Complex geometries
- Time-accurate computations routine
- Multi-discipline calculations routine
- Increasing fidelity and accuracy requirements
- (Parallel) efficiency and robustness in massively parallel clusters
- Output and visualize large 3D, unsteady data set

Conservation Laws

- Fundamental physics dictates conservations of
 - Mass
 - Momentum, force
 - Energy
- Other derivable or non-derivable equations
 - Can be cast in conservative forms
 - E.g. wave equations, Schrodinger equations
- Discretized solutions in space-time domain
 - Local/global conservation critical
 - Resolve flow discontinuities and unsteady waves
 - Conservation in time important for unsteady problems
 - Temporal accuracy
 - Easy treatment of boundary conditions

Numerical/Software Framework for Multi-Discipline Simulations

- Mesh handler
 - General unstructured/cartesian meshes
 - Flexibilities in control (integration) volumes
 - Low to high order mesh information
- Pluggable physics in conservation laws
 - Ideally in certain software template forms
- Schemas for different methods of integrations
 - Explicit schemes vary in integration paths and integral equations
 - Implicit schemes require efficient large matrix solvers
- Pluggable boundary/initial conditions
 - In dynamically link library (DLL) or template forms
 - Allowing communications between codes/data
- Multi-core/CPU/GPU parallel computation infrastructures
 - Independent of computational modules
- Output modules
 - Allowing flexible user outputs in DLL or file sharing modules

Core Ideas of the CESE Method (I)

- Construction of non-dissipative schemes
 - By solving derivatives using individual CE
 - Alternatively by solving derivatives using dependent variables at vertices

$$Q(x, y, t) = Q_0 + Q_t(t - t_0) + Q_x(x - x_0) + Q_y(y - y_0)$$

- Add numerical dissipation as desired
 - Via modification of derivatives
- Allows numerical dissipation controls
 - Numerical dissipation scales with smallest grid spacing
 - Alternative form of subgrid scale modeling

PT Invariant, Non-dissipative Core CESE Schemes (S.-C. Chang)

- Parity (spatial-reflection) and time reversal
- Symmetric stencil in space-time

Elliptical Wave Propagation Using the CESE Method

The space-time conservation element, solution element (CESE) method

Courtesy I.-S. Chang, Aerospace Corp.

Zalesak, S. T., "A Preliminary Comparison of Modern Shock-Capturing Schemes: Linear Advection," Advances In Computer Methods for Partial Differential Equations, Vol. VI, ed. R. Vichnevetsky and R. S. Stepleman, Proceedings of the 6th IMACS Inter' I Symp., pp.15-22, June 23-25, 1987.

Numerical Formulation

Conventional schemes

$$\frac{dQ}{dt}V = -\sum_{i=1}^{N} \int_{S_i} F \cdot d\vec{s} + \int_{V} KdV$$

Explicit, implicit time advancement

Spatial integration, FEM or FVM

- In CESE, unified temporal and spatial volume integration
 - In strong form

$$\oint_{CE} \vec{h} \cdot d\vec{s} = 0$$

$$\vec{h} = (Q, E, F, G) \quad \vec{s} = (t, x, y, z)$$

$$\begin{array}{c}
\overrightarrow{ds} \\
\overrightarrow{dr} \\
\overrightarrow{r} = (x,t) \\
V \\
S(V)
\end{array}$$

$$\frac{\partial Q}{\partial t} + \frac{\partial E}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial G}{\partial z} = 0$$

Differential form only Used to compute time derivatives

Core Ideas of the CESE Method (II)

- Local and global space and time conservation
- Sum of total flux equals to boundary fluxes
- Flux vectors only functions of dependent variables expressed in finite series expansions

A Note on Entropy and Kinetic Energy Preserving Schemes

- Global conservation of the CESE framework guarantees that entropy production only comes from the boundaries
 - No production at cell interfaces
- Kinetic energy is formulated using first-order or third-order polynomials of dependent variables, no alternative forms are intrinsic to the formulation
- Flux vectors are functions of the approximation polynomials with no ad-hoc reconstructions required
 - Degree of conservation of fundamental laws depends on polynomial order only

Core Ideas of the CESE Method (III)

Distinguishing solution elements and conservation elements (control volume)

Cell Interfaces and Riemann Solvers

Seeking exact or approximate solution at the discontinuous interfaces

- 1D approximate/exact solution well established
- Dimensional/directional splitting for structured mesh needed
- Multi-dimensional extension for unstructured mesh?

The CESE Method

 Staggered solution element (SE) & conservation element (CE) for flux integration

Numerical Flux Integration

Conventional Unstructured Methods

- Solution element : Q₀, blue triangle
- Integration volume : blue triangle
- Three interface integrations:
 - Q_0 $Q_{1,}$ Q_0 $Q_{2,}$ Q_0 Q_3
 - Three (approximate) Riemann solutions
 - Reconstruct a unique flux vector at the interfaces

Solution element (SE): blue triangle

$$Q(x, y, t) = Q_0 + Q_t(t - t_0) + Q_x(x - x_0) + Q_y(y - y_0)$$

- Integration volume : three quads (conservation elements, or CE)
- Six interface integrations:
 - All within an SE
 - No jumps across interfaces
 - No flux reconstruction or Riemann problems needed

Space-Time CESE Method

- Flux conservation over discretized space-time domain – not just along spatial coordinates
- Staggered integration volumes (conservation element) and solution volumes (solution element)
 - No cell interface Riemann solution needed
 - No1D approximations at cell interfaces
- Genuine multi-dimensional formulation
 - No dimensional/directional splitting necessary
- Non-dissipative baseline a-scheme
 - Numerical dissipation added when necessary
- Simplicity geometry & simple integration

Timeline of the CESE Method Development

Time-accurate Computations

- Accuracy
 - High-order temporal and spatial formulations
 - Numerical dissipation control
 - Resolving discontinuities/waves simultaneously
- Efficiency
 - Time step (CFL number) determined by physics, not numerics
 - Local time stepping for multi-scale, multi-physics
 - Scalable parallel computations
- Robustness
 - Numerical stability, minimal attention
 - Complex geometries
 - Unstructured or Cartesian meshes

CESE Development Toward Large-Scale Multi-discipline LES Simulations

- Time-accurate local time stepping (TALTS)
 - Unsteady simulations with a large disparity of spatial (thus temporal) scales
 - Improve accuracy/efficiency
- High-order (4th or higher) formulations
 - Explicit schemes, simulating acoustic scales
 - CFL bound < 1, regardless of order of accuracy
- Tetrahedral mesh
 - Free of "orientation", dissipation ideal for small scales
- Moving boundary formulation in the context of space-time conservation

Time-accurate local time-stepping (TALTS) CESE method

- Preserve temporal accuracy
 - Flux conservation enforced in the space-time domain through space-time flux integration
- Accurate solutions for both time-dependent and state-state problems
- Numerical methods
 - Sorting time steps: calculate time steps using a CFL number, let Δt = minimum time step, construct allowable array of time steps by $f(k) = 2^k \Delta t$
 - Determining solution levels
 - Integrating flux in space-time with patches with a physical clock

Topology for time-accurate local time-stepping flux integration

Acoustic Wave Propagation with Non-Uniform Mesh

Near-Wall Stretched Mesh

Mach 6 Flow over a Cylinder

- Navier-Stokes computations with triangular mesh
 - Max. aspect ratio = 10^3 and $\Delta t_{max}/\Delta t_{min} = 2^{10}$

Shock-fitting solutions by: Salas, M. D. and Atkins, H. L., "On Problems Associated with Grid Convergence of Functionals," *Computers & Fluids*, Vol. 38, Issue 7, pp. 1145-1454, 2009.

Mach 1.6 flow over a Cone with Counterflowing Jet

Mach 6 flow over a large blunt body with 28° angle of attack

- 32 million tetrahedral elements, $\Delta t_{max}/\Delta t_{min} = 2^9$
 - Unknowns are U, U_x , U_y , and U_z
 - Using 120 Sandy Bridge cores
- Computational time (wall clock)
 - 1.38 sec/iteration using TALTS

- 4.20 sec/iteration using constant dt

Non-ideal load balancing

High-Order CESE Methods

- Introduced by S.-C. Chang 2010
- Numerical framework allows constructions of 4th, 6th, 8th, and higher order CESE schemes
 - Odd orders can also be formulated
- With identical compact stencil for quad/triangle or tetrahedral/hexahedral meshes
- Numerically stable for CFL < 1
 - No reduction in CFL limit as order of accuracy increases as in many explicit high-order methods

4th-order CESE Method

- Solve 2nd derivative equations using 2nd-order schemes
- Calculate 3rd derivatives using finite-differences
- High-order flux integrations over discretized space-time conservation elements, solve for zero-th derivatives
 - High-order moments on top and bottom faces
 - High-order Gaussian quadrature on side faces
 - Alternatively, Jacobian tensors can be derived for flux vectors and used for integration (tedious)
- Solve first derivatives using finite differences, apply numerical dissipation
- Calculate temporal derivatives using governing equations $U_{tt} = \frac{\partial F_{xt}}{\partial x} + \frac{\partial F_{yt}}{\partial y} + \frac{\partial F_{zt}}{\partial z}$

$$U_{tt} = \frac{\partial F_{xt}}{\partial x} + \frac{\partial F_{yt}}{\partial y} + \frac{\partial F_{zt}}{\partial z}$$

Computational time (with Mathematica generated expressions, non-optimized) is about 25~32 times the 2nd order code

Verification with Full Euler Equations

- Acoustic wave propagating diagonally through a square domain with isotropic triangular mesh
- Compared with linear acoustic wave solutions

Triangular mesh

Velocity contours

Verification with Full Euler Equations

Amplitude = 10^{-8}

Grid Resolution Required for Waves

1D Shock-Acoustic Wave Interaction

Used by ENO, WENO, schemes to validate accuracy

Density Contours and distribution

Shu & Osher Benchmark Problem (Shock/acoustic wave interaction)

1600 points

Grid converged solution With large dissipation

Reduced numerical dissipation

Acoustic Wave/Bow Shock Interaction over a hemisphere at Mach 6

Supersonic flow over a multi-gutter wall

Mach = 1.41, experiments by Suzuki et al.

High-order Method Workshop Benchmark C1.1

- Done by David Friedlander (GRC)
- Subsonic flow over a bump

Length Scale: 0.0063789

Number of Cells: 8,192

• Grids used were as provided by the workshop

HOM Benchmark C1.1 Error Norm vs. Other Methods (p = 3)

By David Friedlander GRC

HOM Benchmark C1.1 Error Norm vs. other methods (p = 3)

Red symbols : 2nd order CESE

Isotropic Turbulence Decay Simulation M_t=0.6, Re_t=100 (64³ tetrahedrons)

4th order CESE

Isotropic Turbulence Decay Simulations M_t=1.5, Re_t=50 (122³ tetrahedrons)

 $Re_{Taylor} = 50.0; M_t = 1.5$

Iso-surface of Q-criterion shaded with Mach contour

Isotropic Turbulence Decay Simulations M₊=1.5, Re₊=50 Spectra

Direct Numerical Simulation of Taylor Green Vortex – Inviscid & Re = 1600

HOM Benchmark C3.5

43

Direct Numerical Simulation of Taylor Green Vortex – Euler Solutions

Taylor-Grenn Vortex (Inviscid)
Q-criterion (value =0.1) plot shaded by z-vorticity

Direct Numerical Simulation of Taylor Green Vortex – Re = 1600

Direct Numerical Simulation of Taylor Green Vortex – Inviscid & Re = 1600

Mach 3 flat-plate boundary layer

Integral High-Order Boundary Conditions

- Specified integrals at the boundary
 - Zero flux
 - Pressure or heat flux (high-order) integrals evaluated at boundary faces

Mach 3 flat-plate boundary layer with adiabatic walls

NASA Langley Research Center (ez4d)

Subsonic (Mach 0.3) flow over a cavity

Subsonic (Mach 0.3) flow over an isolated cylinder

Hot spot/shock interaction (Mach 1.2) by Craig Streett, LaRC

Supersonic (Mach 6) flow over an isolated cylinder

CESE Applied to Multidiscipline Problems

- Stress waves propagation in solids (Ohio State)
- Fluid-structure interactions (LS-DYNA)
- Solid mechanics (China)
- Detonation waves (Ohio State, China)
- Multi-phase flows (Japan, China)
- LES of turbulent flows (Oxford University)

Solving Time-Dependent Schrödinger **Equations (TDSE) using CESE**

- Focused only on numerical aspects
- Model governing equations

$$i\frac{\partial \Psi}{\partial t} = -\frac{1}{2}\nabla^2 \Psi + V\Psi$$

- $i\frac{\partial\Psi}{\partial t} = -\frac{1}{2}\nabla^2\Psi + V\Psi$ Cast in conservation laws using only first derivatives and solve by the second-order CESE schemes
- Analytical solution is

$$\Psi = e^{i\omega t - |\vec{r}|}$$

if
$$V = \frac{-1}{|\vec{r}|}$$
 $\vec{r} = \sqrt{x^2 + y^2 + z^2}$

Numerical Solutions of the Model TDSE

- Using 10x10, rectangular domain, non-reflecting boundary conditions
- Quadrilateral mesh, 200x200

Time trace at (0, 1)

Ψ Contours

CESE Applications for Various Disciplines

Yu, S.-T., Yang, L.X., and Lowe R. L., "Numerical Simulation of Linear and Nonlinear Waves in Hydroelastic Solids by the CESE Method," *Wave Motion*, 47(3), pp. 168-182, 2010.

53

Livermore Software Technology Corporation http://www.lstc.com

LS-DYNA CESE software

- 2D/Axisymetric/3D Navier-Stokes solver
- Cavitation
- Fluid/structure coupling →
- Moving mesh

Rotating solid turbine blades

Supersonic jet

Concluding Remarks

- Improve unsteady numerical computations by addressing accuracy and efficiency
 - Time-accurate local time stepping method by preserving spacetime flux conservation
 - Enhance accuracy for large grid size disparity
 - Improve efficiency by using large time steps for large cells
 - Used for both unsteady and steady-state computations
 - High-order CESE method
 - Retains the same CFL limit as 2nd order schemes
 - Compact stencil
 - Provides 4th, 3rd, 2nd, and 1st-order accuracy for U, U_x, U_{xx}, and U_{xxx}
- Unstructured tetrahedral meshes offer improved small scale simulations
- Future work
 - Combined TALTS and high-order schemes
 - More DNS of complex physics/geometries using tetrahedral meshes
 - moving boundary problems