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Examples of critical complex flow physics 
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http://www.fzt.haw-hamburg.de/pers/Scholz/dglr/hh/
text_2012_01_26_CFD.pdf Bisek, N and Poggie J., “Large Eddy Simulations of 

Separated Supersonic Flow with Plasma Control,” AFRL 
presentation, April 23, 2013. 

Supersonic (Mach 6) transition induced by roughness 

M = 2.25 

Q (second invariant of the velocity 
gradient tensor) isosurfaces with color 
shaded by temperature 



Future CFD Software 

•  Complex geometries 
•  Time-accurate computations routine 
•  Multi-discipline calculations routine 
•  Increasing fidelity and accuracy requirements 
•  (Parallel) efficiency and robustness in massively 

parallel clusters 
•  Output and visualize large 3D, unsteady data set 

5	





Conservation Laws 

•  Fundamental physics dictates conservations of 
–  Mass 
–  Momentum, force 
–  Energy 

•  Other derivable or non-derivable equations   
–  Can be cast in conservative forms 
–  E.g. wave equations, Schrodinger equations 

•  Discretized solutions in space-time domain 
–  Local/global conservation critical 

•  Resolve flow discontinuities and unsteady waves 

–  Conservation in time important for unsteady problems 
•  Temporal accuracy 
•  Easy treatment of boundary conditions  
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Numerical/Software Framework for Multi-
Discipline Simulations 

•  Mesh handler 
–  General unstructured/cartesian meshes 
–  Flexibilities in control (integration) volumes 
–  Low to high order mesh information 

•  Pluggable physics in conservation laws 
–  Ideally in certain software template forms 

•  Schemas for different methods of integrations 
–  Explicit schemes vary in integration paths and integral equations 
–  Implicit schemes require efficient large matrix solvers 

•  Pluggable boundary/initial conditions 
–  In dynamically link library (DLL) or template forms 
–  Allowing communications between codes/data 

•  Multi-core/CPU/GPU parallel computation infrastructures 
–  Independent of computational modules 

•  Output modules 
–  Allowing flexible user outputs in DLL or file sharing modules 
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Core Ideas of the CESE Method (I) 

•  Construction of non-dissipative schemes 
–  By solving derivatives using individual CE 
–  Alternatively by solving derivatives using dependent 

variables at vertices 

•  Add numerical dissipation as desired 
–  Via modification of derivatives 

•  Allows numerical dissipation controls 
–  Numerical dissipation scales with smallest grid spacing 
–  Alternative form of subgrid scale modeling 
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PT Invariant, Non-dissipative Core CESE 
Schemes (S.-C. Chang) 

•  Parity (spatial-reflection) and time reversal 
•  Symmetric stencil in space-time 
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Crank-Nicolson	

 Leapfrog scheme	



Lax-Wendroff	

 CESE a-scheme	

(x, t) ↔ (−x,−t)



Elliptical Wave Propagation Using the CESE 
Method  
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Zalesak, S. T., “A Preliminary Comparison of Modern Shock-Capturing Schemes: Linear Advection,” Advances In Computer Methods for Partial 
Differential Equations, Vol. VI, ed. R. Vichnevetsky and R. S. Stepleman, Proceedings of the 6th IMACS Inter’l Symp., pp.15-22, June 23-25, 
1987. 
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The space-time conservation element, solution element (CESE) method 
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Numerical Formulation 
•  Conventional schemes 

•  In CESE, unified temporal and spatial volume integration 
–  In strong form 
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Differential form only 
Used to compute time 
derivatives 



Core Ideas of the CESE Method (II) 

•  Local and global space and time conservation 
•  Sum of total flux equals to boundary fluxes 
•  Flux vectors only functions of dependent variables 

expressed in finite series expansions 
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A Note on Entropy and Kinetic Energy 
Preserving Schemes 

•  Global conservation of the CESE framework 
guarantees that entropy production only comes 
from the boundaries 
–  No production at cell interfaces 

•  Kinetic energy is formulated using first-order or 
third-order polynomials of dependent variables, no 
alternative forms are intrinsic to the formulation 

•  Flux vectors are functions of the approximation 
polynomials with no ad-hoc reconstructions 
required 
–  Degree of conservation of fundamental laws depends 

on polynomial order only 
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Core Ideas of the CESE Method (III) 

•  Distinguishing solution elements and conservation 
elements (control volume) 
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Discontinuities? 

Anderson: Modern Compressible Flows 



Cell Interfaces and Riemann Solvers 

Seeking exact or approximate solution at the 
             discontinuous interfaces 

•  1D approximate/exact solution well established 
•  Dimensional/directional splitting for structured mesh needed 
•  Multi-dimensional extension for unstructured mesh? 
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The CESE Method 

•  Staggered solution element (SE) & conservation 
element (CE) for flux integration 

Traditional 
Finite Volume 

SE	



CE	
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Numerical Flux Integration 
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•  Solution element : Q0, blue triangle 
•  Integration volume : blue triangle 
•  Three interface integrations: 

•  Q0- Q1, Q0 – Q2 ,  Q0- Q3 
•  Three (approximate) Riemann        
solutions 
•  Reconstruct a unique flux 
vector at the interfaces 

	



•  Solution element (SE) : blue 
triangle 
     
•  Integration volume : three quads 
(conservation elements, or CE) 
•  Six interface integrations: 

•  All within an SE 
•  No jumps across interfaces 
•  No flux reconstruction or 
Riemann problems needed 
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Space-Time CESE Method 

•  Flux conservation over discretized space-time 
domain – not just along spatial coordinates 

•  Staggered integration volumes (conservation 
element) and solution volumes (solution element) 
–  No cell interface Riemann solution needed 
–  No1D approximations at cell interfaces 

•  Genuine multi-dimensional formulation 
–  No dimensional/directional splitting necessary 

•  Non-dissipative baseline a-scheme 
–  Numerical dissipation added when necessary 

•  Simplicity – geometry & simple integration 
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Time-accurate Computations 

•  Accuracy 
–  High-order temporal and spatial formulations 
–  Numerical dissipation control 
–  Resolving discontinuities/waves simultaneously 

•  Efficiency 
–  Time step (CFL number) determined by physics, not 

numerics 
–  Local time stepping for multi-scale, multi-physics 
–  Scalable parallel computations 

•  Robustness 
–  Numerical stability, minimal attention 
–  Complex geometries 

•  Unstructured or Cartesian meshes 
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CESE Development Toward Large-Scale 
Multi-discipline LES Simulations 

•  Time-accurate local time stepping (TALTS) 
–  Unsteady simulations with a large disparity of spatial 

(thus temporal) scales  
–  Improve accuracy/efficiency  

•  High-order (4th or higher) formulations 
–  Explicit schemes, simulating acoustic scales 
–  CFL bound < 1, regardless of order of accuracy 

•  Tetrahedral mesh 
–  Free of “orientation”, dissipation ideal for small scales 

•  Moving boundary formulation in the context of 
space-time conservation 
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Time-accurate local time-stepping (TALTS) 
CESE method 

•  Preserve temporal accuracy 
–  Flux conservation enforced in the space-time domain 

through space-time flux integration 
•  Accurate solutions for both time-dependent and 

state-state problems 
•  Numerical methods 

–  Sorting time steps: calculate time steps using a CFL 
number, let Δt = minimum time step, construct allowable 
array of time steps by f(k) = 2k Δt 

–  Determining solution levels 
–  Integrating flux in space-time with patches with a 

physical clock 
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Topology for time-accurate local time-stepping 
flux integration 
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Acoustic Wave Propagation with Non-
Uniform Mesh 
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Mach 6 Flow over a Cylinder 

•  Navier-Stokes computations with triangular mesh 
–  Max. aspect ratio = 103 and Δtmax/Δtmin= 210 
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Figure 3. Mach 6 viscous flow over a cylinder with a wall-clustered viscous mesh, Mach number 
contours compared inviscid solutions obtained by shock-fitting method:29(a) ad hoc local time-
stepping (b) TALTS. 

In more practical applications, a large mesh-size disparity is unavoidable.  Flow physics dictates the 
required mesh size.  The ideal mesh should have a grid distribution that is commensurate with the physical 
length scale.  The development of the TALTS scheme is aimed at coping with a computational domain with 
various physical length scales.   In the next test case, a cone with a counterflowing jet at the leading edge 
submerged in a Mach 1.6 free stream is computed.  The shear layer and jet instability waves alter the 
leading edge shock.  To accurately compute the flowfield for sonic boom applications, both the near-field 
instability waves and far-field shocks need to be captured with proper resolutions.   To reduce the total grid 
counts, the mesh has to transition from the near field fine grid to the farfield coarse grid like that shown in 
Fig. 4.  In the constant time step approach, the finest mesh near the jet exit determines the time step size 
used in the simulations by using the constraint of CFL < 1.  In the farfield, the same time step implies a 
very small local CFL number.  Numerical dissipation increases significantly when the CFL number 
decreases for the CESE method.  The computed normalized pressure disturbance contours (based on the 
freestream pressure value) shown in Fig. 5(a) exhibit a twist near the grid transition region.  Further 
downstream, the shock appears to be diffused due to excessive numerical dissipation.  On the contrary, the 
computed solutions using TALTS displayed in Fig. 5(b) show consistent shock resolutions across both 
regions. In this particular example, the grid size varies several orders of magnitude.  The TALTS 
simulations use k = 11, i.e., the ratio between the largest and the smallest time step is 2,048.   
 

Another application of the TALTS method is to compute steady-state supersonic flow over a large blunt 
body as shown in Fig. 6. To resolve the viscous boundary layer and the strong bow-shock simultaneously, 
the mesh size varies by several orders of magnitude.  The TALTS scheme can significantly improve the 
accuracy both in shock-capturing and resolving boundary-layer profiles.  In this particular example, ninth-
power time levels (k = 9) for the 32 million tetrahedral elements were used.  Parallel efficiency for the 
TALTS schemes needs some careful consideration.  The mesh in this example is decomposed into 120 
blocks running in parallel using 120 cores on NASA Langley Research Center’s K-cluster with Sandy 
Bridge Intel CPUs.  The average physical time required is about 1.38 seconds per time iteration.  Similar 
computations using constant time step took about 4.2 seconds physical time per time iteration.  This 
amounts to about a factor of 3 saving in computational time by using the TALTS method. The speed-up in 
computational efficiency is reasonable.  However, load balancing is suboptimal because many blocks only 
contain relatively large cells.  These blocks would spend significant amount of time waiting for other 
blocks with small time steps to catch up.  To further improve parallel efficiency, the domain decomposition 
must be done with due consideration of equal grid size distribution.  A “chunk” style grid with each chuck 

(a) (b) 
Shock-fitting solutions by: Salas, M. D. and Atkins, H. L., “On Problems Associated with Grid 
Convergence of Functionals,”  Computers & Fluids, Vol. 38, Issue 7, pp. 1145-1454, 2009. 
 



Mach 1.6 flow over a Cone with 
Counterflowing Jet 
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Δtmax/Δtmin= 211 

Mesh 

Constant time step Time-accurate local time-stepping 

Pressure Contours 
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Figure 6. Computed Mach number contours at two planes for a Mach 6 flow over a blunt body with 
a 28o angle of attack, computed using TALTS. 

 
 

 
The 4th-order CESE Method for Scalar Equations 

 
To verify the order of accuracy for the 4th-order CESE numerical framework, the following scalar wave 

equation is used for extensive tests. 
  

∂u
∂t
+ a(∂u

∂x
+
∂u
∂y
+
∂u
∂z
) = 0 (16)  

The corresponding flux vector is 

h = (au, au, au, u).Without loss of generality, the parameter value for 

a  is set to be 1. Due to the simplicity of this equation form, the high-order equations (eq. (13)) for the 
above scalar equation take the same form as the original equation. Equation (16) allows a variety of exact 
solutions to be constructed for testing purposes.  A polynomial solution  

u = f (θ ), θ =t− x
3
−
y
3
−
z
3

(17)  

is used for validation.  For simplicity, the function is assumed to satisfy  where n is a positive 
integer.  A 20×20×20 cubic domain is discretized using four different meshes: 103, 203, 403, and 803.  The 
resulting structured meshes are further sliced into tetrahedrons.  The above exact solutions are imposed as 
initial and boundary conditions. Numerical dissipation parameters are fixed at α = 0 and σ = 1.5. 
Theoretically, when the polynomial order satisfies n < 4, the 4th-order scheme should give exact solutions.  
And indeed, the computed solutions retained exact solutions with an error norm hovering around 10-11-10-15 
for a large number of iterations.  When n = 4, the error norm versus number of grid counts in each direction 
is shown in Fig. 7.  As expected, the error norms converge at 4th-, 3rd-, and 2nd-order rate for U0, Ux, Uxx, 
and Uxxx, respectively.  The error norms for y-derivatives converge at an identical rate. 
 

f (θ ) =θ n,

Mach 6 flow over a large blunt body with 28o 
angle of attack 

•  32 million tetrahedral elements, Δtmax/Δtmin= 29 
–  Unknowns are U, Ux, Uy, and Uz 
–  Using 120 Sandy Bridge cores 

•  Computational time (wall clock) 
–  1.38 sec/iteration using TALTS 
–  4.20 sec/iteration using constant dt 
–  Non-ideal load balancing 
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High-Order CESE Methods 

•  Introduced by S.-C. Chang 2010 
•  Numerical framework allows constructions of 4th, 

6th, 8th, and higher order CESE schemes 
–  Odd orders can also be formulated  

•  With identical compact stencil for quad/triangle or 
tetrahedral/hexahedral meshes 

•  Numerically stable for CFL < 1 
–  No reduction in CFL limit as order of accuracy increases 

as in many explicit high-order methods 
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4th-order CESE Method 

•  Solve 2nd derivative equations using 2nd-order schemes 
•  Calculate 3rd derivatives using finite-differences 
•  High-order flux integrations over discretized space-time 

conservation elements, solve for zero-th derivatives 
–  High-order moments on top and bottom faces 
–  High-order Gaussian quadrature on side faces 

•  Alternatively, Jacobian tensors can be derived for flux 
vectors and used for integration (tedious) 

•  Solve first derivatives using finite differences, apply numerical 
dissipation 

•  Calculate temporal derivatives using governing equations 

•  Computational time (with Mathematica generated expressions, 
non-optimized) is about 25~32 times the 2nd order code 
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Verification with Full Euler Equations 

•  Acoustic wave propagating diagonally through a 
square domain with isotropic triangular mesh 

•  Compared with linear acoustic wave solutions 
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Triangular mesh Velocity contours 



Verification with Full Euler Equations 
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Amplitude = 10-6 Amplitude = 10-8 



Grid Resolution Required for Waves 
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1D Shock-Acoustic Wave Interaction 

Used by ENO, WENO, schemes to validate accuracy 

Density Contours and distribution 
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Shu & Osher Benchmark Problem 
(Shock/acoustic wave interaction) 
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Figure 12. Comparison of computed density distribution using 4th-order CESE with Shu and 
Osher22 by using a σ value of 1.5 and different numerical dissipation: (a) α = 1 (b) α = 0.5. 

As a more difficult test case involving complex geometry and shock patterns, the Mach 1.4 flow over a 
multi-gutter wall, previously investigated experimentally by Suzuki et al.24 and computationally by Wang 
et al.,25 is tested with the high-order CESE method.  A total of about 125,000 triangular elements were used 
in the computations.  Figure 13 compares results obtained by using both second- and 4th-order CESE 
methods using the same mesh with the experiments.  The shock sensor defined in eq. (9) is used to detect 
shocks.  For both computations, slightly more numerical dissipation (σ = 2) is used in the vicinity of shocks 
and a uniform dissipation parameter (σ = 1.1) is used elsewhere.  In the 4th-order computations, the 
discretization is also switched to second-order in the vicinity of shocks.  Keeping high-order derivatives 
across the shock is numerically unnecessary.  Switching to second-order help resolve the shocks better.  As 
can be seen from Fig. 13, both computations give quite satisfactory shock resolutions.  The 4th-order 
solutions provide more details around the gutter wall and near the complex reflected shocklets, additional 
short-scale waves reflecting from the wall is also visible.  This example demonstrates the use of high-order 
method in the region where small-scale physics are present.  Numerical computations are also underway to 
detect the minimum grid requirement for the high-order CESE method. 
 

 
 
 

(a) (b) 

(a) (b) Grid converged solution 
With large dissipation 

Reduced numerical dissipation 

1600 points 



Acoustic Wave/Bow Shock Interaction over 
a hemisphere at Mach 6 
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•  Mach = 1.41, experiments by Suzuki et al. 

Supersonic flow over a multi-gutter wall 
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Figure 13. Normal density gradient contours for a Mach 1.41 flow over a multi-gutter wall: (a) 
results with second-order CESE (b) results with 4th-order CESE (c) experimental Schlieren 
photography by Suzuki et al.24 at a slightly different time. 

 
As a preliminary step for validating the developed Navier-Stokes solvers, a Mach 3 flow over a flat 

plate is computed by using a triangular mesh sliced from a structured 41×21 quadrilateral grid.  The inflow 
and top boundaries are fixed at a Mach number of 3, the bottom wall boundary is set to be at adiabatic 
conditions, and the downstream boundary uses non-reflecting conditions.   The computed velocity contours 
overlay by the mesh used is shown in Fig. 14(a).  The velocity profiles at a Reynolds number of 105 agree 
well with the compressible boundary solutions, as shown in Fig. 14(b).  With only about 10 mesh points 
within the boundary layer, the agreement is satisfactory for a 4th-order Navier-Stokes solver.  More 
detailed validations including order of accuracy are under investigation and will be the subject of a separate 
paper.  
 

 

 

Figure 14. Mach 3 viscous flow over an adiabatic flat-plate boundary layer computed by high-oder 
CESE: (a) velocity contours and grid distribution (b) velocity profiles at Re = 105 compared with 
compressible boundary-layers solutions. 

(a) (b) 

(c) 

 

2nd-order scheme 4th-order scheme 



High-order Method Workshop Benchmark 
C1.1 

•  Done by David Friedlander (GRC) 
•  Subsonic flow over a bump 

37	



Length Scale:  0.0063789	


Number of Cells: 8,192	



•  Grids used were as provided by the workshop	





HOM Benchmark C1.1 
Error Norm vs. Other Methods (p = 3) 

38	

By David Friedlander GRC	



Red symbols : 2nd order CESE 



HOM Benchmark C1.1 
Error Norm vs. other methods (p = 3) 
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By David Friedlander GRC	



Red symbols : 2nd order CESE 



Isotropic Turbulence Decay Simulation 
Mt=0.6, Ret=100 (643 tetrahedrons) 
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4th order CESE 



Isotropic Turbulence Decay Simulations 
Mt=1.5, Ret=50 (1223 tetrahedrons) 
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Isotropic Turbulence Decay Simulations 
Mt=1.5, Ret=50 Spectra 
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Direct Numerical Simulation of Taylor Green 
Vortex – Inviscid & Re = 1600 

•  HOM Benchmark C3.5 
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From HOM Workshop, http://www.dlr.de/as/desktopdefault.aspx/
tabid-8170/13999_read-35550/ 



Direct Numerical Simulation of Taylor Green 
Vortex – Euler Solutions 
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Direct Numerical Simulation of Taylor Green 
Vortex – Re = 1600 
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Direct Numerical Simulation of Taylor Green 
Vortex – Inviscid & Re = 1600 
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1923 tetrahedrons (2nd order) 

4th order 



Mach 3 flat-plate boundary layer 
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Figure 13. Normal density gradient contours for a Mach 1.41 flow over a multi-gutter wall: (a) 
results with second-order CESE (b) results with 4th-order CESE (c) experimental Schlieren 
photography by Suzuki et al.24 at a slightly different time. 

 
As a preliminary step for validating the developed Navier-Stokes solvers, a Mach 3 flow over a flat 

plate is computed by using a triangular mesh sliced from a structured 41×21 quadrilateral grid.  The inflow 
and top boundaries are fixed at a Mach number of 3, the bottom wall boundary is set to be at adiabatic 
conditions, and the downstream boundary uses non-reflecting conditions.   The computed velocity contours 
overlay by the mesh used is shown in Fig. 14(a).  The velocity profiles at a Reynolds number of 105 agree 
well with the compressible boundary solutions, as shown in Fig. 14(b).  With only about 10 mesh points 
within the boundary layer, the agreement is satisfactory for a 4th-order Navier-Stokes solver.  More 
detailed validations including order of accuracy are under investigation and will be the subject of a separate 
paper.  
 

 

 

Figure 14. Mach 3 viscous flow over an adiabatic flat-plate boundary layer computed by high-oder 
CESE: (a) velocity contours and grid distribution (b) velocity profiles at Re = 105 compared with 
compressible boundary-layers solutions. 

(a) (b) 

(c) 

 

Mesh with u 
velocity contours 

u velocity 

Skin friction v velocity v velocity with 
larger domain 



Integral High-Order Boundary Conditions 

•  Specified integrals at the boundary  
–  Zero flux  
–  Pressure or heat flux (high-order) integrals evaluated at 

boundary faces 
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Mach 3 flat-plate boundary layer with adiabatic walls 



NASA Langley Research Center (ez4d) 
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Subsonic (Mach 0.3) flow over a cavity Hot spot/shock interaction (Mach 1.2) by Craig 
Streett, LaRC 

Supersonic (Mach 6) flow over an isolated cylinder 

Subsonic (Mach 0.3) flow over an isolated cylinder 



CESE Applied to Multidiscipline Problems 

•  Stress waves propagation in solids (Ohio State) 
•  Fluid-structure interactions (LS-DYNA) 
•  Solid mechanics (China) 
•  Detonation waves (Ohio State, China) 
•  Multi-phase flows (Japan, China) 
•  LES of turbulent flows (Oxford University) 
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Solving Time-Dependent Schrödinger 
Equations (TDSE) using CESE 

•  Focused only on numerical aspects 
•  Model governing equations 

•  Cast in conservation laws using only first 
derivatives and solve by the second-order CESE 
schemes 

•  Analytical solution is  
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Numerical Solutions of the Model TDSE 
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•  Using 10x10, rectangular domain, non-reflecting 
boundary conditions 

•   Quadrilateral mesh, 200x200 

time
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CESE Applications for Various Disciplines 

Prof. S.-T. Yu, Ohio State University 
Ideal Magnetohydrodynamics (MHD) 
Simulations 

Stress Wave in Solids 

Pulse Detonation Engine 
Mach 0.5 into M = 0  

3D ZND (detonation) 
Mass fraction 

Yu, S.-T., Yang, L.X., and Lowe R. L., “Numerical Simulation of Linear and Nonlinear Waves in Hydroelastic Solids by the CESE 
Method,”  Wave Motion, 47(3), pp. 168-182, 2010. 53	





Livermore Software Technology Corporation 
http://www.lstc.com 

•  LS-DYNA CESE software 
–  2D/Axisymetric/3D Navier-Stokes solver 
–  Cavitation 
–  Fluid/structure coupling 
–  Moving mesh 

54	

Supersonic jet Rotating solid turbine blades 



Concluding Remarks!
•  Improve unsteady numerical computations by addressing 

accuracy and efficiency 
–  Time-accurate local time stepping method by preserving space-

time flux conservation 
•  Enhance accuracy for large grid size disparity 
•  Improve efficiency by using large time steps for large cells 
•  Used for both unsteady and steady-state computations 

–  High-order CESE method 
•  Retains the same CFL limit as 2nd order schemes 
•  Compact stencil 
•  Provides 4th, 3rd, 2nd, and 1st-order accuracy for U, Ux, Uxx, and Uxxx 

•  Unstructured tetrahedral meshes offer improved small 
scale simulations 

•  Future work 
–  Combined TALTS and high-order schemes 
–  More DNS of complex physics/geometries using tetrahedral 

meshes 
–  moving boundary problems 
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