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Give Up or Never Give Up

“ There're times when it is good to give up.”
“I agree.”

I give up to get creative.



Interesting Schemes

Residual-distribution schemes (Roe, VKI, INRIA, etc.)

Residual-based compact schemes (Corre and Lerat, JCP2001)

Third-order edge-based finite-volume scheme (Katz and Sankaran JCP2011)

Economical high-order schemes

This talk will focus on the third-order FV scheme 
for conservation laws with a source term.

These schemes contain the target equation (or residual) in the truncation error (TE):
E.g., for linear advection, an RD scheme has the following TE,

Leading term vanishes in steady state, and accuracy upgraded to second-order (Residual property).

T E =
h

2a
(a∂x + b∂y)(a∂xu+ b∂yu) +O(h2)



Second-Order FV Scheme

Edge-based finite-volume scheme:

with the upwind flux at edge midpoint: 

with the left and right solution values:

Conservation law:

Second-order accurate with first-order accurate gradients.
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NASA’s FUN3D, Software Cradle’s SC/Tetra, etc.

∂xf + ∂yg = 0

0 = −
∑
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Third-Order FV Scheme
1. Extrapolate the fluxes:

Left and right fluxes are computed by

 (Katz and Sankaran JCP2011)

Third-order scheme on second-order stencil

The resulting scheme has the truncation error on triangular(tetrahedral) grids:

T E = (C1∂xx + C2∂xy + C3∂yy)(∂xf + ∂yg)h
2 +O(h3)
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2. Second-order gradients (e.g., LSQ quadratic fit)
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Conservation Law with Source
For a conservation law with a source term:

Source term includes a time-derivative term.
∂xf + ∂yg = s

Source term must be discretized to yield

Special formulas exist for regular grids.
This is critical for extending the third-order scheme to time-dependent problems.

T E = (C1∂xx + C2∂xy + C3∂yy)(∂xf + ∂yg − s)h2 +O(h3)

We add a source term discretization to the third-order scheme:

0 = −
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k∈{kj}
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∫

Vj

s dV
∫
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s dV = sjVj



Formulas for Regular Grids

Equilateral-triangular stencil:

How can I come up with such a 
formula for irregular grids?
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Galerkin Discretization  (Katz and Sankaran JCP2011)

∫

Vj

s dV =
Vj

12
(6sj + s1 + s2 + s3 + s4 + s5 + s6)

Right-triangular stencil:
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 (Nishikawa, JCP2012)

∫

Vj

s dV =
Vj

24
(30sj − s1 − s2 − s3 − s4 − s5 − s6)



I can’t.



New Problem

Can we write the source term in the divergence form?

Then, source term discretization will not be needed.

If possible, we can write 

∂xf + ∂yg = s

∂xf + ∂yg = ∂xf
s + ∂yg

s

∂x(f − fs) + ∂y(g − gs) = 0

s −→ ∂xf
s + ∂yg

s



Divergence Formulation of Source Term

Source term discretization is no longer needed.
  Gradient and Hessian of the source are needed, 

which can be computed by the quadratic fit.

Then,                         can be written as a single divergence form: 

where

(xj, yj) is a point in a computational grid.
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∂x(f − fs) + ∂y(g − gs) = 0



Equivalent up to Third-Order

At node j, it is equivalent to the original equation.
In the neighborhood, equivalent up to third-order,
                                                         which is sufficient for third-order scheme.

The divergence form,

can be expanded as
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∂x(f − fs) + ∂y(g − gs) = 0
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3∂yyys



One-Component Forms

All are equivalent to one another up to third-order.

The divergence form is equivalent to the following:

or
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Third-Order Scheme

Edge-based finite-volume scheme:

with the central flux for the source flux:

with the left and right flux values:

Conservation law:

Third-order achieved without source term discretization.

The resulting scheme has the truncation error:
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∂x(f − fs) + ∂y(g − gs) = 0

T E = (C1∂xx + C2∂xy + C3∂yy)(∂xf + ∂yg − s)h2 +O(h3)
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2
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Fs = (fs, gs)



One-Component Case

Edge-based finite-volume scheme:

with the central flux for the source flux:

with the left and right flux values:
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Source discretization replaced by a scalar central scheme.
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Source Flux and Flux Gradients
 Some details not given in Nishikawa, JCP2012

3. Compute the left and right fluxes:
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2
(∇fs)j ·∆ljk, fs
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k − 1

2
(∇fs)k ·∆ljk

2. Compute the gradient of the source flux:
Ignored for third-order

Ignored for third-order
(∇f)k =


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Source flux discretization is not conservative (of course).
The other flux needs to be computed separately because                  .ψjk != −ψkj
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3∂xxsSource flux:

1. Compute the source flux at nodes:
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ψjk =
1

2
(fs

L + fs
R, 0) · n̂jk4. Compute the central flux for node j:



Exact Divergence Form

1.  Second derivatives are not needed.
2.  Gradient of the source term is needed.
    (It can be computed analytically or by a quadratic fit.)
3.  This is not possible for time-derivative terms (only discrete values).

If the source term is simple enough, e.g.,

it can be written exactly as

Therefore, again, source term discretization is not needed. 
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∂xf + ∂yg = cos(x− y)

fs = sin(x− y), gs = 0

∂xf + ∂yg = ∂xf
s + ∂yg

s

( The choice is not unique. )



Burgers Equation: Regular Grids
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Exact solution:

- n x n grids: n = 9, 17, 33, 65, 129, 257.

- Dirichlet boundary condition.

- 6 neighbors for quadratic fit.

- Time-stepping by RK2 to steady state.

- (5/4, -1/4) indicates the special formula.

Second-order with the point discretization.

u(x, y) = sin(x− y)

∂x(u
2/2) + ∂yu = cos(x− y)(sin(x− y)− 1)
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Burgers Equation: Irregular Grids

Only the divergence formulation 
achieved third-order accuracy.

- n x n grids: n = 9, 17, 33, 65, 129, 257.

- Dirichlet boundary condition.

- 10 neighbors for quadratic fit.
  (to avoid ill-conditioning of LSQ matrix)

- Time-stepping by RK2 to steady state.

- (5/4, -1/4) indicates the special formula.

Exact solution: u(x, y) = sin(x− y)

∂x(u
2/2) + ∂yu = cos(x− y)(sin(x− y)− 1)



Third-order finite-volume scheme made simple 
for source term by the divergence formulation.

Relation with the formula of Katz (Katz 2012, unpublished); looks similar. 
Application to unsteady computation (time derivative as a source).
Application to other discretization methods.
Application to other types of source terms (involving the solution).

which I might have never been able to even think about
 if I had not given up.

Conclusion

Future work:

Hyperbolic


