Aeroacoustic Optimization Capabilities in the Open-Source SU2 Solver

Beckett Y. Zhou1,2, Tim Albring1, Nicolas R. Gauger1,
Carlos R. Ilario da Silva3, Thomas D. Economou3, Juan J. Alonso3

1Chair for Scientific Computing, TU Kaiserslautern, Germany
2Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Germany
3Aerospace Design Laboratory, Stanford University, USA

SU2
The Open-Source CFD Code

March 13, 2018
Challenges in Airframe Noise Reduction
– An Optimal Design Perspective

- Various noise sources present at different frequencies but comparable amplitudes – must be reduced by similar amounts for discernible overall noise reduction
- $J^N = \text{rms}(p') (=\text{OASPL})$ misleading
 - Must target broadband component!
 - EPNLdB (2-10kHz range)
 - Strong requirement on CAA solver
- To meet aggressive noise reduction goals, it is insufficient to only reduce high-lift and landing gear noise – trailing edge scattering (‘lower bound’) must be reduced.\(^{(1)}\)
- Require efficient simulation and design tools to explore innovative and unconventional configurations and control strategies
 - Porous TE
 - LE and TE serrations
 - ...

Review of Existing Work

State of the Art on Aeroacoustic Simulation

- ‘Direct’ noise computation via DNS/LES computationally intractable for far-field observer locations (strong disparity between hydrodynamic and acoustic length scales at low \(M_\infty \))
- A hybrid two-stage approach allows for more efficient noise prediction
- Near-body turbulent flow field resolved using LES/DES/URANS
- Noise signal propagated to far-field using linearized Euler or integral methods such as Ffowcs Williams-Hawkings (FW-H)
- Predictive capabilities must be used to influence design!

Computational Cost: \((N_{xyz} \sim 10^8) \times (N_{\Delta t} \sim 10^5) \implies \text{CPU-hrs} \sim ? \)

Existing Work on Aeroacoustic Optimization – A Non-Exhaustive List

- Airfoil design in turbulent flow (2D URANS+FW-H) using discrete adjoint, Rumpfkeil & Zingg, 2010
- Helicopter blade design (3D Euler+FW-H) using discrete adjoint, Fabiano et al., 2015
- Porous trailing-edge design (LES+APE) using AD-based discrete adjoint, Zhou, Gauger et al., 2015, 2016
- Optimizations involving high-fidelity and scale-resolving simulations limited to simple geometries
Review of Existing Work

State of the Art on Aeroacoustic Simulation

- ‘Direct’ noise computation via DNS/LES computationally intractable for far-field observer locations (strong disparity between hydrodynamic and acoustic length scales at low M_∞)
- A hybrid two-stage approach allows for more efficient noise prediction
- Near-body turbulent flow field resolved using LES/DES/URANS
- Noise signal propagated to far-field using linearized Euler or integral methods such as Ffowcs Williams-Hawkins (FW-H)
- Predictive capabilities must be used to influence design!

Computational Cost: $(N_{xyz} \sim 10^8) \times (N_{\Delta t} \sim 10^5) \implies \text{CPU-hrs} \sim ?$

Existing Work on Aeroacoustic Optimization – A Non-Exhaustive List

- Airfoil design in turbulent flow (2D URANS+FW-H) using discrete adjoint, Rumpfkeil & Zingg, 2010
- Helicopter blade design (3D Euler+FW-H) using discrete adjoint, Fabiano et al., 2015
- Porous trailing-edge design (LES+APE) using AD-based discrete adjoint, Zhou, Gauger et al., 2015, 2016
- Optimizations involving high-fidelity and scale-resolving simulations limited to simple geometries

This work: Consistent and robust discrete adjoint on the basis of algorithmic differentiation (AD) to explore unconventional design concepts
SU2 – An Open-Source Multi-Physics Analysis and Design Tool

- Open source multi-physics solver suite
- URANS: FV method with various flux discretization schemes (JST, AUSM, etc) and turbulence models (SA & SST) implemented
- Dual-time stepping for time-accuracy
- Dynamic grid movement capability
- SLSQP optimizer (SciPy), initially implemented with continuous adjoint

Active development on various disciplines by many groups around the world
- Stanford University (original solver, continuous adjoint, etc)
- TU Kaiserslautern (CFD-CAA coupled solver, AD-based discrete adjoint)
- TU Delft & Politecnico di Milano (Turbomachinery applications)
- Imperial College (Aero-structural analysis)
- Technological Institute of Aeronautics (DDES, IDDES, etc)

Latest Version (v6.0 Falcon) released in Feb. 2018
Aeroacoustic Simulation and Optimization in SU2 – The Past, Present, and Future

Past

- 2D URANS + FWH in frequency domain
- Noise minimization on various 2D configurations

Present

- 3D FWH in both time and frequency domain, coupled with URANS and DDES
- Noise minimization with 3D URANS + FWH, final analysis using DDES + FWH
- Preliminary validation against experiment using DDES + FWH

Future

- Minimization of broadband noise with DDES + FWH
- (U)RANS with stochastic noise generation (SNGR / fRPM / ASR)

AVIATION 2016

SCI-TECH 2017
Aeroacoustic Simulation and Optimization in SU2 – The Past, Present, and Future

Past

- 2D URANS+FWH in frequency domain
- Noise minimization on various 2D configurations

Present

- 3D FWH in both time and frequency domain, coupled with URANS and DDES
- Noise minimization with 3D URANS+FWH, final analysis using DDES+FWH
- Preliminary validation against experiment using DDES+FWH

Future

- Minimization of broadband noise with DDES+FWH
- (U)RANS with stochastic noise generation (SNGR/fRPM/ASR)
A Coupled CFD-CAA Framework for Noise Prediction

A boundary integral formulation of the permeable surface Ffowcs Williams-Hawkings (FW-H) acoustic solver is coupled with CFD solver in SU2 for efficient acoustic computations at arbitrary observer locations. [Di Francescantonio, 1997]

\[
p'_{obs}(\vec{x}, t) = \left[\int_{\Gamma_p} \left(\frac{\rho_\infty \dot{U} \cdot \hat{n}}{4\pi r} \right)_{ret} d\Gamma_p + \frac{1}{c} \int_{\Gamma_p} \left(\frac{\dot{F} \cdot \hat{r}}{4\pi r} \right)_{ret} d\Gamma_p + \int_{\Gamma_p} \left(\frac{F \cdot \hat{r}}{4\pi r^2} \right)_{ret} d\Gamma_p \right] + p'_Q \tag{1}
\]

where

- \(U_i = \rho u'_i / \rho_\infty \),
- \(F_i = \left[(p - p_\infty)\delta_{ij} - \tau_{ij} + \rho u'_i u'_j \right] \hat{n}_j \),

- Flow field in \(\Omega_1 \) resolved by CFD
- \(p, \rho, u'_i \) on \(\Gamma_p \) extracted from CFD data
- \(p'_T \) & \(p'_L \): ‘thickness’ and ‘loading’ noise source
- Quadrupole source (\(p'_Q \)) negligible for low \(M_\infty \)
- \([\cdot]_{ret}\): source terms evaluated in ‘retarded’ time
- 2-D freq-domain formulation also implemented (Lockard, 2000)
AD-based Unsteady Discrete Adjoint Framework

Consider a system of semi-discretized PDEs as follows:
\[
\frac{dU}{dt} + R(U) = 0
\]

\(U\): spatially discretized state vector
\(R(U)\): is the discrete spatial residual vector.

Second-order backward difference is used for time discretization:
\[
R^*(U^n) = \frac{3}{2\Delta t} U^n + R(U^n) - \frac{2}{\Delta t} U^{n-1} + \frac{1}{2\Delta t} U^{n-2} = 0, \quad n = 1, \ldots, N
\]

Dual-time stepping method converges \(R^*(U^n)\) to a steady state solution at each time level \(n\) through a pseudo time \(\tau\):
\[
\frac{dU^n}{d\tau} + R^*(U^n) = 0
\]

Implicit Euler method is used to time march the above equation to steady state:
\[
U^n_{p+1} - U^n_p + \Delta \tau R^*(U^n_{p+1}) = 0, \quad p = 1, \ldots, M
\]
The resultant nonlinear system can be linearized around U^n_p to solve for the state U^n_{p+1}:

$$U^n_{p+1} - U^n_p + \Delta \tau \left[R^* (U^n_p) + \frac{\partial R^*}{\partial U} \bigg|_p (U^n_{p+1} - U^n_p) \right] = 0, \quad p = 1, \ldots, M$$

This can be written in the form of a fixed-point iteration:

$$U^n_{p+1} = G^n(U^n_p, U^{n-1}, U^{n-2}), \quad p = 1, \ldots, M, \quad n = 1, \ldots, N$$

G^n: an iteration of the pseudo time stepping
U^{n-1}: converged state vector at time level $n - 1$
U^{n-2}: converged state vectors at time level $n - 2$

The fixed point iteration converges to the numerical solution U^n:

$$U^n = G^n(U^n, U^{n-1}, U^{n-2}), \quad n = 1, \ldots, N$$
The discretized unsteady optimization problem over N time levels:

$$\min_{\alpha} \ J = f(U_{N*}, \ldots, U^N, \alpha)$$

subject to

$$U^n = G^n(U^n, U^{n-1}, U^{n-2}, \alpha), \quad n = 1, \ldots, N$$

α: vector of design variables. J is evaluated between $N_* \leq n \leq N$. One can express the Lagrangian associated with the above constrained optimization problem as follows:

$$L = f(U_{N*}, \ldots, U^N, \alpha) - \sum_{n=1}^{N} [((\bar{U}^n)^T (U^n - G^n(U^n, U^{n-1}, U^{n-2}, \alpha))]$$

\bar{U}^n: adjoint state vector at time level n.

$$\frac{\partial L}{\partial \bar{U}^n} = 0, \quad n = 1, \ldots, N \quad \text{(State equations)}$$

$$KKT: \quad \frac{\partial L}{\partial U^n} = 0, \quad n = 1, \ldots, N \quad \text{(Adjoint equations)}$$

$$\frac{\partial L}{\partial \alpha} = 0, \quad \text{(Control equation)}$$
AD-based Unsteady Discrete Adjoint Framework

The unsteady discrete adjoint equations can be derived in the fixed point form as:

\[
\bar{U}^n_{i+1} = \left(\frac{\partial G^n}{\partial \bar{U}^n} \right)^T \bar{U}^n_i + \left(\frac{\partial G^{n+1}}{\partial \bar{U}^n} \right)^T \bar{U}^{n+1} + \left(\frac{\partial G^{n+2}}{\partial \bar{U}^n} \right)^T \bar{U}^{n+2} + \left(\frac{\partial J}{\partial \bar{U}^n} \right)^T, \quad n = N, \ldots, 1
\]

\[\bar{G}^n(\bar{U}^n, \bar{U}^{n-1}, \bar{U}^{n-2})\]

\(\bar{U}^{n+1}\): converged adjoint state vector at time level \(n + 1\)
\(\bar{U}^{n+2}\): converged adjoint state vector at time level \(n + 2\)

The unsteady adjoint equations above are solved backward in time. The sensitivity gradient can be computed from the adjoint solutions:

\[
\frac{dL}{d\alpha} = \frac{\partial J}{\partial \alpha} + \sum_{n=1}^{N} \left((\bar{U}^n)^T \frac{\partial G^n}{\partial \alpha} \right)
\]

- High-lighted terms computed using **Algorithmic Differentiation** in reverse mode
- Reverse accumulation used at each time level to ‘tape’ the computational graph for AD
- Adjoint iterator inherits the same convergence properties as primal iterator
- G includes: turbulence model, grid movement, limiters, etc
- AD implementation details see Albring et al. AIAA-2016-3518
Coupled CFD-FWH Noise Prediction and Optimization Framework

- **CFD Solver:** \(U^n = G^n(U^n, U^{n-1}, U^{n-2}) \)
- **FWH Solver:** \(p'_\text{obs}(\vec{x}, t) = p'_T + p'_L = F_n(U|\Gamma_p, \vec{x}, t) \)
- **Adjoint CFD:** \(\bar{U}^n = \bar{G}^n(\bar{U}^n, \bar{U}^{n-1}, \bar{U}^{n-2}) + \left(\frac{\partial J}{\partial U^n} |_{\Gamma_p} \right)^T \)
- **\(U^n|_{\Gamma_p} \):** Flow variables at time step \(n \) on the FWH surface \(\Gamma_p \)
- **\(\frac{\partial J}{\partial U^n} |_{\Gamma_p} \):** sensitivity of the noise objective with respect to flow variables evaluated on the FWH surface \(\Gamma_p \)
Verification of FWH Solver (2D)

- 2-D circular cylinder in subsonic, turbulent flow
- \(M_\infty = 0.25, \ Re = 5 \times 10^6 \)
- Turbulent flow computed by URANS
- Acoustics computed by 2-D freq-domain FWH (Lockhard, 2000)
- 3 mics placed in radial direction and 3 mics in circumferential direction
- \(p' \) at mic positions compared (URANS-FWH vs. Direct URANS)

<table>
<thead>
<tr>
<th>Microphone No.</th>
<th>(r)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3D</td>
<td>90°</td>
</tr>
<tr>
<td>2</td>
<td>6D</td>
<td>90°</td>
</tr>
<tr>
<td>3</td>
<td>12D</td>
<td>90°</td>
</tr>
<tr>
<td>4</td>
<td>5D</td>
<td>45°</td>
</tr>
<tr>
<td>5</td>
<td>5D</td>
<td>90°</td>
</tr>
<tr>
<td>6</td>
<td>5D</td>
<td>135°</td>
</tr>
</tbody>
</table>
Verification of 2-D FWH Solver (Circumferential Direction)

- Microphone 4, \(r=5D, \theta=45 \text{ deg} \)
- Microphone 5, \(r=5D, \theta=90 \text{ deg} \)
- Microphone 6, \(r=5D, \theta=135 \text{ deg} \)

- : Direct URANS; – – – : URANS-FWH; - - - : Hanning Window

- Excellent match in frequency
- Slight mismatch in amplitude – Hanning window (to enforce periodicity) is energy-preserving, NOT amplitude-preserving
Verification of 2-D FWH Solver (Radial Direction)

Microphone 1, \(r=3D, \theta=90 \) deg

Microphone 2, \(r=6D, \theta=90 \) deg

Microphone 3, \(r=12D, \theta=90 \) deg

- : Direct URANS; -- : URANS-FWH; - - - : Hanning Window

- Excellent match in frequency
- Discernible amplitude difference in furthest mic (\(r=12D \)) due to mesh coarsening (damping of static pressure signal in URANS)
Verification of FWH Solver (3-D)

- Monopole source at origin
- Acoustic source on FWH surface analytically computed
- Propagation to farfield with both time- and frequency-domain FWH
- Excellent agreement between FWH-propagated signal and analytical signal at 3 farfield positions
- Slight mis-match in amplitude for frequency-domain FWH due to windowing
- Farfield $p' \propto 1/r$ scaling law perfectly observed

Analytic: (——)
Time-domain FWH: (– – –)
Frequency-domain FWH: (· · ·)
Validation: 3-D Rod-Airfoil Configuration

Vorticity Iso-surfaces ($\omega_z D/ U_\infty = \pm 1$)

- NACA0012 airfoil section in the turbulent wake of a circular cylinder
- Representative test case for interaction noise of various airframe components
- Good benchmark test case with tonal (cylinder shedding) and broadband (turbulent wake breakdown & impingement) components
- Farfield noise measurement made by Jacob et al.

Measurement by Jacob et al.
URANS to DDES

- URANS+Turbulence Model: well-tuned and inexpensive in attached boundary layer but inaccurate in separated flow
- LES cost scales strongly with Re in wall-bounded flows but accurate and independent of Re in separated zones
- Delayed Detached Eddy Simulation (DDES): RANS in boundary layer; LES in separated region (Spalart et al., 2006)
- More refinement → more turbulent content (LES-like behaviour)
- Crucial for broadband noise prediction

Beckett Y. Zhou et al.
Aeroacoustic Optimization in SU2
Validation: 3-D Rod-Airfoil Configuration

- NACA0012 airfoil section \((C = 0.1m)\) with \(S = 0.5C\) placed at a distance \(\delta = 1.0C\) behind a cylinder of diameter \(D = 0.1C\)
- \(U_\infty = 72m/s\), \(Re_c = 4.8 \times 10^5\)
- Structured mesh with \(\sim 6.0\) million elements with refinement in rod-airfoil gap
- Nearfield acoustic source computed by DDES+SA
- Propagation to 3 farfield microphone positions \((r = 18.5C, \theta = 45^\circ, 90^\circ\) and \(135^\circ)\) using time-domain FWH.
- Farfield \(p'\) computed based on 28,500 samples, \(\sim 38\) cycles of airfoil lift fluctuation
Validation: Farfield Noise Spectra

- Good agreement with measurement around the spectral peak: tonal frequency $St = 0.19$ and peak SPL well-captured
- Low frequency error: installation effect not modeled in simulation (also noted by Giret et al. 2012)
- Broadband range over-predicted (work in progress)
 - Excessive mesh coarsening after impingement and in airfoil wake (switch back to RANS mode)
 - Spurious noise from neglecting quadrupole source (Greschner et al. 2008)
Validation: Farfield Noise Spectra

- URANS-based results over-predict peak SPL by up to 15dB
- Tonal frequency also off by $\sim 20\%$
- Turbulent wake breakdown in rod-airfoil gap region not resolved by URANS
Noise Minimization of a Rod-Airfoil Configuration (2-D)

- NACA0012 airfoil at a distance $\delta = 0.7C$ behind the cylinder
- Airfoil pitched to $\text{AoA}=5^\circ$
- $U_\infty = 72\, \text{m/s}$, $Re_c = 4.8 \times 10^5$
- Hybrid mesh with $\sim 100\text{K}$ elements with refinement within FWH surface
- Nearfield acoustic source computed by URANS+SA
- Propagation to 3 farfield microphone positions ($r = 100C$, $\theta = 45^\circ$, 90° and 135°) using frequency-domain FWH (Lockard, 2000).
- Farfield p' corresponds to ~ 9 cycles of airfoil lift fluctuation
- $J^N = \text{RMS}(p')$
- Shape design via free-form deformation (FFD) \implies 256 DV’s
Optimization History: Unconstrained vs. Lift-Constrained

- Aeroacoustic and aerodynamic design objectives directly competing
- Unconstrained noise minimization: \(\sim 36\%\) noise reduction accompanied by marked loss of lift (\(\sim 59\%\)!
- Lift-constrained noise minimization: more modest noise reduction (\(\sim 27\%\)) but mean lift maintained at baseline level
Acoustic Fields

- Re-computed on finer meshes for better resolution
- Dilatation field: provides a qualitative comparison of the radiated acoustic waves
Directivities and Optimized Designs

- Noise reduction in all directions with exception of shallow upstream angles
- Surface waviness in both noise-minimized and lift-constrained-noise-minimized designs
- Noted in works of other groups, mostly in spanwise waviness along LE
Noise Minimization of a Rod-Airfoil Configuration (3-D)

- NACA0012 airfoil section with $S = 0.5C$ placed at a distance $\delta = 0.7C$ behind the cylinder
- $U_\infty = 72\,m/s$, $Re_c = 4.8 \times 10^5$
- Hybrid mesh with ~ 2.8 million elements with refinement within permeable FWH surface
- Nearfield acoustic source computed by URANS+SA
- Propagation to 3 farfield microphone positions ($r = 100C$, $\theta = 45^\circ$, 90° and 135°) using time-domain FWH.
- Farfield p' corresponds to ~ 10 cycles of airfoil lift fluctuation
Optimization History

- 33% reduction in $J^N = \sqrt{(p')^2}$ after 9 design iterations
- No aerodynamic or geometric design constraints applied
- Clear farfield noise reduction in all three directions ($\theta = 45^\circ$, 90° and 135°)
Optimization History

Surface noise sensitivity in normal direction

- Does not collapse the airfoil as one would expect
- Optimizer introduces streamwise waviness on both upper and lower surfaces
- No spanwise variation in surface sensitivities – due to coherent vortices impinging on the airfoil LE due to URANS simulation
- Scale-resolving simulations required to model turbulent wake breakdown
DDES Simulation of Nearfield Acoustic Sources

- Hybrid mesh with 4 million elements with extra refinement in cylinder wake region to encourage RANS-LES switch
- Surface waviness ‘surpresses’ noise-generating vortical structures from the airfoil surface
Acoustic Results Based on DDES-FWH

- Sample collection after 50 flow passage times
- 15000 samples corresponding to ~ 40 cycles of lift fluctuations on airfoil
- J^N reduced by ~ 45% (compared to 33% with URANS-FWH)
- OASPL: omni-directional noise reduction, up to 6dB
Farfield Noise Spectra ($R = 100C$)

- Peak frequency $St = 0.19$ well-captured in baseline configuration
- Peak SPL reduced by 5-6 dB
- Broadband reduction not omni-directional, but at least peak SPL not shifted towards higher frequency
- To minimize broadband noise, J^N must be re-defined to target high-frequency component \Rightarrow perform optimizations directly with DDES-FWH in the loop
LE and TE Modifications

- LE and TE serration/waviness already shown to have acoustic and aerodynamic benefits

Adjoint Optimization with DDES+FHW?

- Can they be further optimized?
- More importantly, can noise reduction be achieved with aerodynamic design constraints at practical flow regimes ($Re \sim 10^7$)?

Credit: Fish et al. Integrative and Comparative Biology, 2008

Summary and Future Work

Summary

- 2D & 3D FW-H acoustic solver implemented in SU2, coupled with URANS and DDES
- Adjoint-based aeroacoustic design enabled by a discrete adjoint solver based on algorithmic differentiation (AD)
- Aeroacoustic and aerodynamic design objectives shown to be competing
- Streamwise surface waviness observed in optimized airfoil with 5-6 dB noise reduction (scale-resolving methods required to exploit spanwise variations)
- Validation against experiment: tone well-captured; broadband to be improved
Summary and Future Work

Future Work

- Further validate the DDES-FWH solver in SU2 against various benchmark cases.
Summary and Future Work

Future Work

- Further validate the DDES-FWH solver in SU2 against various benchmark cases
- Adjoint-based noise minimization to tackle broadband noise – much more challenging to remove/reduce than tonal noise
 - Challenge #1: Mesh size for DDES $\sim O(10^{7-8})$ for large, complex geometries
 - Challenge #2: Need for regularization due to chaotic LES content
- Joint work with Lars Davidson’s group at Chalmers University to commence in April 2018
- Can URANS-SNGR-FWH provide ‘accurate enough’ characterization of farfield noise (compared to DDES-FWH) for optimization?
- SU2-ANOPP2 coupling for propeller design (joint work with Len Lopes, NASA Langley)
- System-level optimization with OpenMDAO (joint work with Justin Gray, NASA Glenn)
Summary and Future Work

Future Work

- Further validate the DDES-FWH solver in SU2 against various benchmark cases
- Adjoint-based noise minimization to tackle broadband noise – much more challenging to remove/reduce than tonal noise
 - Challenge #1: Mesh size for DDES $\sim O(10^{7-8})$ for large, complex geometries
 - Challenge #2: Need for regularization due to chaotic LES content
- Synthetic-turbulence-type methods (e.g. SNGR) for noise generation based on (U)RANS solutions at lower cost
 - Joint work with Lars Davidson’s group at Chalmers University to commence in April 2018

Can URANS-SNGR-FWH provide ‘accurate enough’ characterization of farfield noise (compared to DDES-FWH) for optimization?

SU2-ANOPP2 coupling for propeller design (joint work with Len Lopes, NASA Langley)

System-level optimization with OpenMDAO (joint work with Justin Gray, NASA Glenn)
Summary and Future Work

Future Work

- Further validate the DDES-FWH solver in SU2 against various benchmark cases.
- Adjoint-based noise minimization to tackle broadband noise – much more challenging to remove/reduce than tonal noise.
 - Challenge #1: Mesh size for DDES $\sim O(10^{7-8})$ for large, complex geometries.
 - Challenge #2: Need for regularization due to chaotic LES content.
- Synthetic-turbulence-type methods (e.g. SNGR) for noise generation based on (U)RANS solutions at lower cost.
 - Joint work with Lars Davidson’s group at Chalmers University to commence in April 2018.
- Can URANS-SNGR-FWH provide ‘accurate enough’ characterization of farfield noise (compared to DDES-FWH) for optimization?
Summary and Future Work

Future Work

- Further validate the DDES-FWH solver in SU2 against various benchmark cases.
- Adjoint-based noise minimization to tackle broadband noise – much more challenging to remove/reduce than tonal noise:
 - Challenge #1: Mesh size for DDES $\sim O(10^7-8)$ for large, complex geometries.
 - Challenge #2: Need for regularization due to chaotic LES content.
- Synthetic-turbulence-type methods (e.g. SNGR) for noise generation based on (U)RANS solutions at lower cost:
 - Joint work with Lars Davidson’s group at Chalmers University to commence in April 2018.
- Can URANS-SNGR-FWH provide ‘accurate enough’ characterization of farfield noise (compared to DDES-FWH) for optimization?
- SU2-ANOPP2 coupling for propeller design (joint work with Len Lopes, NASA Langley).
Summary and Future Work

Future Work

- Further validate the DDES-FWH solver in SU2 against various benchmark cases.
- Adjoint-based noise minimization to tackle broadband noise – much more challenging to remove/reduce than tonal noise.
 - Challenge #1: Mesh size for DDES $\sim O(10^7−8)$ for large, complex geometries.
 - Challenge #2: Need for regularization due to chaotic LES content.
- Synthetic-turbulence-type methods (e.g. SNGR) for noise generation based on (U)RANS solutions at lower cost.
 - Joint work with Lars Davidson’s group at Chalmers University to commence in April 2018.
- Can URANS-SNGR-FWH provide ‘accurate enough’ characterization of farfield noise (compared to DDES-FWH) for optimization?
- SU2-ANOPP2 coupling for propeller design (joint work with Len Lopes, NASA Langley).
- System-level optimization with OpenMDAO (joint work with Justin Gray, NASA Glenn).
Acknowledgements

- Computing resources provided by the “Alliance of High Performance Computing Rheinland-Pfalz” (AHRP), via the “Elwetritsch” Cluster at the TU Kaiserslautern
- Financial support from the Canadian Postgraduate Scholarship (NSERC-PGS-D)

Thank you for your attention